請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52283
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹穎雯(Yin-Wen Chan) | |
dc.contributor.author | Jih-Shiuan Ho | en |
dc.contributor.author | 何季軒 | zh_TW |
dc.date.accessioned | 2021-06-15T16:10:58Z | - |
dc.date.available | 2016-08-20 | |
dc.date.copyright | 2015-08-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | [1] Cady, P.D. Weyers, R.E. “Chloride penetration and the deterioration of concrete bridge decks”, Cement & Concrete Aggregate, Vol. 5, pp. 81–87, 1983.
[2] Ki Yong Ann, Ha-Won Song “Chloride threshold level for corrosion of steel in concrete”, Corrosion Science 49 , pp. 4113–4133, 2007. [3] Mario Collepardi, Aldo Marcialis, Renato Turriziani,“Penetration of chloride ions into cement pastes and concretes”, Journal of the American Ceramic Society, Vol. 55, Issue 10, pp. 534-535,1972 [4] 劉彥志,「飛灰混凝土傳輸行為之研究」,碩士論文,國立臺灣海洋大學材料工程研究所,民國一百年六月。 [5] 王駿紳,「快速評估貯鹽浸漬試驗之水泥砂漿氯離子擴散行為」,碩士論文,國立臺灣海洋大學材料工程研究所,民國一百零一年六月。 [6] 張廷駿,「探討鹽霧試驗與貯鹽試驗對混凝土耐久性之關聯性」,碩士論文,國立臺灣海洋大學材料工程研究所,民國一百零二年六月。 [7] 鄭佳緯,「以混凝土中氯離子滲入總含量探討實驗室內試驗及戶外曝曬試驗之關係」,碩士論文,國立臺灣海洋大學材料工程研究所,民國一百零三年六月。 [8] 林致緯,「以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為」,碩士論文,國立臺灣海洋大學材料工程研究所,民國九十五年六月。 [9] 蔡旻廷,「使用壓力滲透試驗探討混凝土中氯離子之滲透行為」,碩士論文,國立臺灣大學土木工程研究所 [10] M. Castellote, C. Andrade, C. Alonso, “Measurement of the steady and non-steady-stat chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber comparison with nature diffusion tests”, Cement and Concrete Research, Vol. 31, pp. 1411-1420, 2001 [11] M. D. A. Thomas, P. B. Bamforth, “Modelling chloride diffusion in concrete Effect of fly ash and slag”, Cement and Concrete Research 29, pp. 487-495, 1999. [12] Mehta and P. K., “Pozzolanic and Cementitious by Products as Mineral Admixtures for Concrete-A Critical Review”, ACI SP-79, pp. 1-46, 1983. [13] 日本土木學會,「高爐石粉末應用於混凝土施工指針」,平成8年。 [14] ACI Committee 226, “Silica Fume in Concrete”, ACI Materials Journal, Vol. 84, No. 6, pp. 158-166, 1987. [15] 李修齊,「高強度混凝土水中磨耗性質之機理探討」,碩士論文,國立台灣大學土木工程研究所,民國八十六年七月。 [16] 宋佩瑄,「矽灰在混凝土工程上之發展與應用」,結構工程,第113-120頁,民國七十七年。 [17] 賴正義,「高飛灰量混凝土性質」,台電工程月刊,第551期,民國八十三年。 [18] Arya, C., Buenfeld, N.R. and Newman, J.B., “Factors influencing chloride-binding in concrete,” Cement and Concrete Research, vol. 20, pp. 291–300, 1990. [19] Dhir, R.K., Jones, M.R. “Development of chloride-resisting concrete using fly ash,” Fuel, vol. 78, pp. 137–142, 1999. [20] Diamond, S., “Effects of two danish fly ashes on alkali contents of pore solutions of cement-fly ash pastes,” Cement and Concrete Research, vol. 11, pp. 383–394, 1981. [21] Kawamura, M., Kayyali, O.A., Haque, M.N., “Effects of fly ash on pore solution composition in calcium and sodium chloride-bearing mortars,” Cement and Concrete Research, vol. 18, pp. 763–773, 1988. [22] 詹穎雯,「環境溫、濕度對含高爐石、飛灰與普通波特蘭水泥混凝土強度之影響與變形之研究」,碩士論文,國立台灣大學土木工程研究所,民國七十五年七月。 [23] Uhlig, H.H. and Revie, R.W. Corrosion and Corrosion Control. New York: Wiley, 1985, pp.28-35. [24] Andrade, C., Castellote, M., Sarria, J. and Alonso, C., “Evolution of Pore Solution Chemical, Electroosmosis and Rebar Corrosion Rate Induced by Realkalisation,” Materials and Structures, Vol.32, pp.427-436,1999. [25] Shalon, R. and Raphael, M., “Influence of Sea Water on Corrosion of Reinforcement,” ACI Journal, Vol. 55, No.12, pp.1251-1268,1959. [26] Fraczek, J., “A Review of Electrochemical Principles as Applied to Corrosion Corrosion of Steel in a Concrete or Grout Environment,” ACI SP 102-2, pp. 13-24, 1987. [27] Angst, U., Elsener, B., Larsen, C.K., Vennesland,Q., “Critical chloride content in reinforced concrete — A review,” Cement and Concrete Research, vol.39, pp.1122-1138, 2009. [28] Tuutti, K., “Corrosion of Steel in Concrete,” Swedish Cement and Concrete Research Institute, 1982. [29] J. Tritthart, “Chloride binding: II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding”, Cement and Concrete Research 19, pp. 683–691, 1989 [30] C.L. Page, K.W.J. Treadaway, Aspects of the electrochemistry of steel in concrete, Nature 297, pp. 109–115, 1982 [31] C. Alonso, C. Andrade, M. Castellote, P. Castro, “Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar”, Cement and Concrete Research, Vol. 33, Iss.7 , pp.1487-1490, 2000. [32] K.H. Pettersson, “Factors influencing chloride induced corrosion of reinforcement in concrete”, in: C. Sjostrom (Ed.), Durability of Building Materials and Components, Vol. 1, Chapman & Hall, London, pp. 334-341, 1996. [33] P. Lambert, C. L. Page, P. R. W. Vassie, “Investigation of reinforcement corrosion. Electrochemical monitoring of steel in chloride contaminated concrete”, Mater Struct, Vol. 24, pp.351-358, 1991. [34] V. K. Gouda and W. Y. Halaka, “Corrosion and corrosion inhibition of reinforced steel”, Br Corros J., Vol. 5, pp. 204-208, 1970. [35] O. A. Kayyali and M. N. Haque, “The ratio of Cl-/OH- in chloride con- taminated concrete. A most important criterion”, Mag Concr Res, Vol. 47, pp. 235-242, 1995. [36] P. Schiessl and W. Breit, “Local repair measures at concrete structures damaged by reinforcement corrosion”, Proceedings of the 4th International Symposium on Corrosion of Reinforcement in Concrete Construction, SCI, Cambridge, pp.525- 234, 1996. [37] M. Thomas, J. D. Matthews, C. A. Haynes, “Chloride diffusion and reinforce- ment corrosion in marine exposed concretes containing PFA”, Corrosion of Reinforcement in Concrete, Elsevier, Warwickshire, pp. 198-212, 1990. [38] M. Thomas, “Chloride thresholds in marine concrete”, Cement and Concrete Research, Vol. 26, Iss. 4, pp. 513-519, 1996. [39] B. B. Hope and A.K.C. Ip, “Chloride corrosion threshold in concrete”, ACI Material Journal, pp. 306-314, 1987. [40] ASTM C-876, “Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete”, 1999 [41] Liu, Y., Weyers, R. E., “Comparison of Guarded and Unguarded Linear Polarization CCD Devices with Weight Loss Measurements”, Elsevier Science Ltd, Cement and Concrete Research Vol. 33, pp. 1093-1101, 2003. [42] Broomfield, J. P., Rodriguez, J., L.M. Ortega, “Corrosion Rate and Life Prediction for Reinforced Concrete Structures”, Structure Faults and Repairs Symposium, Historic University of Edinburgh, Scotland, 1993. [43] Gonza´lez, J.A., Algaba, S., Andrade, C., “Corrosion of reinforcing bars in carbonated concrete ,” Br Corros J, vol. 15, no. 3, pp.135 – 139, 1980. [44] Alonso, C., Andrade, C., Castellote, M., Castro, P., “Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar,” Cement and Concrete Research, vol. 30, pp.1047 – 1055, 2000. [45] Erhan Güneyisi, Mehmet Gesog˘lu, Fatih Karabog˘a, Kasım Mermerdas, “Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin”, Composites: Part B 45 pp. 1288–1295, 2013. [46] J. A. González, S. Feliú, P. Rodríguez, E. Ramírez, “Some questions on the corrosion of steel in concrete—Part I: when, how and how much steel corrodes”, Materials and Structures, Vol. 29, pp 40-46, January-February 1996. [47] Stern, M., Geary, A.L., “Electrochemical Polarisation. I. A Theoretical Analysis of the Shape of Polarisation Curves”, J. Electrochem. Soc., Vol. 104, pp. 56-63, 1957. [48] 柯賢文,「腐蝕及其防制」,全華科技圖書有限公司,民國八十四年。 [49] Rodriguez, J., Ortega, L.M., Garcia, A.M., “Corrosion Rate Measurements in Concrete Bridges by Means of the Linear Polarization Technique Implemented in a Field Device,” ACI fall convention, Minneapolis, Minnesota, November 1993. [50] Morris, W., Vico, A., M. Vazquez, S. R. Sanchez, “Corrosion of Reinforcing Steel Evaluated by Means of Concrete Resistivity Measurements”, Elsevier Science Ltd, Corrosion Science, Vol. 44, pp. 81-99, 2002. [51] Polder, R.B., “Test Methods for on Site Measurement of Resistivity of Concrete - a RILEM TC-154 Technique Recommendation”, Elsevier Science Ltd, Construction and Building Materials, Vol. 15, pp. 125-131, 2001. [52] Thomas, M., “Chloride thresholds in marine concrete,” Cement and Concrete Research, vol. 26, on.4, pp.513-519, 1996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52283 | - |
dc.description.abstract | 鋼筋混凝土建材現今已非常普及,但混凝土內之鋼筋若腐蝕容易造成結構物局部強度損失及安全疑慮。台灣地區四面環海,氣候特性屬高溫潮濕,沿海地區之鋼筋混凝土結構物易受海風中氯離子侵入。若氯離子侵入量超過臨界值,即會造成鋼筋表層鈍化膜破壞使鋼筋開始腐蝕。因此了解鋼筋混凝土材料抵抗氯離子入侵的能力是一項重要的課題。
本研究中的試體將分為水膠比0.45、0.55及0.65三種系列及五種卜作嵐材料取代量,以貯鹽試驗使氯離子侵入鋼筋混凝土。在貯鹽試驗進行過程中以美國James儀器公司製作的 Gecor 8 腐蝕電流儀進行腐蝕電流密度量測。並在貯鹽試驗結束後以酸溶性氯離子含量檢測技術測得混凝土內氯離子分佈,再以菲克定律計算出不同配比的擴散係數,以作為混凝土對鋼筋保護程度之參考。 實驗結果顯示擴散係數會隨著混凝土緻密性提升而降低,臨界氯離子濃度則是在水膠比較高的配比有較大的值。而鋼筋表面腐蝕情形也指出在相同的腐蝕表面積下較高的水膠比會對應較大的總氯離子濃度。 | zh_TW |
dc.description.abstract | Reinforced concrete material has been generally used in our daily construction, but corrosion of the steel rebars may decrease the strength and increase the risk of collapse. Taiwan is surrounded by the ocean, the chloride ion would invade reinforced concrete structures by the sea wind. The steel rebar will depassivate and start to corrode when the accumulation of the chloride ion exceeds a critical value. Therefore, understanding the resistance of reinforced concrete from chloride ion intrusion is an important issue.
In this study, the specimens are divided into three groups by different water-cement ratio ( 0.45,0.55 and 0.65 ). There are five substitution ratio of pozzolanic material for cement in each group. Salt ponding test is used to prompt the chlorine ion to invade reinforced concrete specimens. Corrosion current density measured by Gecor 8 corrosion current instrument is taken to be the norm of corrosion. The chloride ion content is gauged by acid-soluble method after the end of salt ponding test. The distribution of chloride ion in concrete is simulated by Fick's Law. Experimental results show that the diffusion coefficient will decrease with the increasing of concrete density. The chloride threshold value increase with the increasing of water-cement ratio. The observation of the surface of steel rebars also points out the specimens with higher water-cement ratio are provided with higher chlorine ion concentration under the same corrosion area. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:10:58Z (GMT). No. of bitstreams: 1 ntu-104-R02521253-1.pdf: 5608957 bytes, checksum: d9ab3b3363d2bf1b9c2401efe749e683 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV 目錄 V 表目錄 VIII 圖目錄 IX 照片目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究流程 2 第二章 文獻回顧 3 2.1 混凝土內氯離子 3 2.1.1 氯離子來源 3 2.1.2 氯離子存在型態 3 2.2 氯離子在混凝土中之擴散行為 4 2.2.1 擴散方程式與擴散係數 4 2.2.2 水化時間對擴散係數之影響 6 2.3 卜作嵐材料對耐久性之影響 7 2.3.1 矽灰 7 2.3.2 飛灰 7 2.3.3 爐石 8 2.4 鋼筋腐蝕原理與機制 9 2.4.1 鋼筋腐蝕的原理 9 2.4.2 影響鋼筋腐蝕的因素 9 2.5 臨界氯離子濃度 10 2.5.1 臨界氯離子濃度的定義 10 2.5.2 臨界氯離子濃度的表示法 11 2.6 鋼筋混凝土中鋼筋腐蝕之檢測方法 12 2.6.1 腐蝕電位(Corrosion Potential) 12 2.6.2 腐蝕電流密度(Corrosion Current Density) 13 2.6.3 混凝土電阻係數(Electrical Resistance) 16 2.6.4 重量損失法 16 第三章 實驗計畫 24 3.1 實驗內容 24 3.2 試驗材料 24 3.3 試驗儀器 25 3.4 試驗配比 26 3.5 抗壓強度試驗 27 3.6 貯鹽試驗 27 3.6.1 試體設計 27 3.6.2 試驗步驟 27 3.7 鋼筋腐蝕電流密度量測試驗 28 3.8 酸溶性氯離子含量滴定試驗 28 3.8.1 取樣方式 28 3.8.2 試驗步驟 29 3.9 鋼筋腐蝕面積量測法 30 第四章 試驗結果與討論 42 4.1 抗壓強度試驗 42 4.1.1 水膠比對抗壓強度之影響 42 4.1.2 卜作嵐材料取代率對抗壓強度之影響 42 4.2 鋼筋腐蝕電流密度量測試驗 43 4.2.1 卜作嵐材料對腐蝕電流密度之影響 43 4.2.2 水膠比對腐蝕電流密度之影響 43 4.3 擴散係數 44 4.4 臨界氯離子濃度 44 4.5 鋼筋表面實際腐蝕情形 45 第五章 結論與建議 69 5.1 結論 69 5.2 建議 69 參考文獻 71 附錄一 腐蝕面積圖集 75 | |
dc.language.iso | zh-TW | |
dc.title | 以貯鹽試驗探討鋼筋混凝土之臨界氯離子濃度 | zh_TW |
dc.title | Using Salt Ponding Test to Evaluate the Chloride Threshold Level in Reinforced Concrete | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖文正,李釗,楊仲家 | |
dc.subject.keyword | 臨界氯離子濃度,擴散係數,腐蝕電流密度,貯鹽試驗, | zh_TW |
dc.subject.keyword | chloride threshold level,diffusion coefficient,corrosion current density,salt ponding test., | en |
dc.relation.page | 86 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。