請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52279完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Hao-Yen Lee | en |
| dc.contributor.author | 李昊晏 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:10:53Z | - |
| dc.date.available | 2016-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | [1] Vasant V.Ranade. 1991. Drug Delivery System 6. Transdermal Drug Delivery, The Journal of Clinical Pharmacology 31(5): 401-418.
[2] David D. N’Da. 2014. Prodrug Strategies for Enhancing the Percutaneous Absorption of Drugs. Molecules 19(12): 20780-20807. [3] Kewal K. Jain. 2008. Drug Delivery Systems. Methods in Molecular Biology 437: 141-217. [4] Nazila Salamat-Miller, Montakarn Chittchang1, Thomas P. Johnston. 2005. The use of mucoadhesive polymers in buccal drug delivery. Advanced Drug Delivery Reviews 57: 1666-1691. [5] Gaurav Tiwari, Ruchi Tiwari, Birendra Sriwastawa, L Bhati, S Pandey, P Pandey, and Saurabh K Bannerjee. 2012. Drug delivery systems: An updated review. Int J Pharm Investig 2(1): 2-11. [6] B.W Barry. 2001. Novel mechanisms and devices to enable successful transdermal drug delivery. European Journal of Pharmaceutical Sciences 14(2): 101-114. [7] Mark R. Prausnitz, Robert Langer. 2008. Transdermal drug delivery. Nat Biotechnol 26(11): 1261–1268. [8] http://www.pulivh.gov.tw/ 台中榮民總醫院埔里分院- 健康促進專區-戒菸輔助藥物 [9] http://www.twivs.tnc.edu.tw/army/Parental/Parental-pa_2_1.htm [10] Tao Han, Diganta Bhusan Das. 2015. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. European Journal of Pharmaceutics and Biopharmaceutics 89: 312–328. [11] Sunny Kumar, Michael Zakrewsky, Ming Chen, Stefano Menegatti, John A. Murask, Samir Mitragotri. 2015. Peptides as skin penetration enhancers: Mechanisms of action. Journal of Controlled Release 199: 168–178. [12] Adrian C. Williams, Brian W. Barry. 2004. Penetration enhancers. Advanced Drug Delivery Reviews 56: 603-618. [13] Eric W. SmithHoward I. Maibach. 2006. PercutaneousPenetrationEnhancers. Taylor & Francis Group, LLC. [14] J Bramson, K Dayball, C Evelegh, Y H Wan, D Page and A Smith. 2003. Enabling topical immunization via microporation: a novel method for pain-free and needle-free delivery of adenovirus-based vaccines. Gene Therapy 10: 251-260. [15] Galit Levin, Amikam Gershonowitz, Hagit Sacks, Meir Stern, Amir Sherman, Sergey Rudaev, Inna Zivin, and Moshe Phillip. 2005. Transdermal Delivery of Human Growth Hormone Through RF-Microchannels. Pharmaceutical Research 22(4): 550–555. [16] Anne-Rose Denet, Rita Vanbever, Ve´ronique Pre´at. 2004. Skin electroporation for transdermal and topical delivery. Advanced Drug Delivery Reviews 56: 659-674. [17] Shulin Li. 2008. Electroporation Protocols: Preclinical and Clinical Gene Medicine. Methods in Molecular Biology. [18] Vikram Kotwal, Kiran Bhise, and Rahul Thube. 2007. Enhancement of Iontophoretic Transport of Diphenhydramine Hydrochloride Thermosensitive Gel by Optimization of pH, Polymer Concentration, Electrode Design, and Pulse Rate, AAPS PharmSciTech 8(4) Article 120. [19] Yogeshvar N. Kalia, Aarti Naik, James Garrison, Richard H. Guy. 2004. Iontophoretic drug delivery. Advanced Drug Delivery Reviews 56: 619-658. [20] Mark R. Prausnitz. 2004. Microneedles for transdermal drug delivery. Advanced Drug Delivery Reviews 56: 581-587. [21] Devin Vincent McAllister. 2000. Microfabricated Needles for Transdermal Drug Delivery. Georgia Institute of Technology. [22] Rebecca Watson. 2012. New Microneedle Patch Uses Body Heat to Administer Medicine. [23] Pang Z and Han C. 2014. Review on Transdermal Drug Delivery Systems. J Pharm Drug Devel 2(4): 402. [24] Mei-Chin Chen. 2012. Chitosan Microneedle Patches for Sustained Transdermal Delivery of Macromolecules. Biomacromolecules 13: 4022−4031. [25] http://www.qifront.com.tw/ [26] https://www.materialsnet.com.tw/DocView.aspx?id=10917 [27] http://www.snipview.com/q/Micromachining [28] Robert Q. Frazer, Raymond T. Byron, Paul B. Osborne, Karen P. West. 2005. PMMA: An Essential Material in Medicine and Dentistry. Journal of Long-Term Effects of Medical Implants 15(6): 629-639. [29] Mei-Chin Chen. 2012. Chitosan Microneedle Patches for Sustained Transdermal Delivery of Macromolecules. Biomacromolecules 13: 4022−4031. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52279 | - |
| dc.description.abstract | 經皮給藥為現在非常常見的藥物傳輸方式,但在治療上經皮給藥還是受到非常多的限制,傳統上的經皮給藥只能夠傳輸小分子藥物或是親脂性藥物,大分子藥物及親水性的藥物皆會被皮膚最外層的角質層所阻擋。最近有一種可以增加皮膚滲透性的微米級針頭被提出並受到關注,利用微針進行藥物傳輸顯示出可以大大提高其傳輸量尤其是對於大分子藥物,微針現在已經廣泛應用於傳輸藥物、疫苗甚至DNA。使用微針與傳統針劑相比有非常多的優點,其一因為微針針頭大約長100~200μm,不會刺穿到真皮層接觸到神經故施打完畢後不會產生疼痛感;其二微針給藥不需要專業醫療人員協助即可自行施打;其三微針能夠結合貼劑穩定的進行長期給藥。
本研究是利用PDMS先將醫美用的微針模型進行翻模,之後利用兩階段注入PMMA的方式聚合形成PMMA微針陣列,微針幾何大小約為1cm*1cm的面積大小每一片微針陣列的個數為6*6的正方形陣列。利用細胞不喜歡貼附在PDMS材料上的特性將PDMS塗抹於cell culture底部,並將細胞與材料一起放入cell culture裡觀察其是否會成功貼附在PMMA微針陣列材料上。 由結果顯示利用兩階段的聚合方法聚合PMMA微針陣列是可行的,3T3細胞能成功得貼附在PMMA微針陣列上,在刺穿測試中發現PMMA微針陣列有與金屬微針陣列一樣的尖銳度、硬度能表現在刺穿去細胞化的豬皮表層上,在耐力測試中發現刺壓10次去細胞化的豬皮表層後PMMA微針陣列針尖會開始產生斷裂的情形而刺壓到50次之後PMMA微針陣列的針尖會全部斷裂,故PMMA微針陣列刺壓50次可能是一個極限,在細胞毒性的測試下發現聚合完全的PMMA是不會對細胞造成傷害或毒性。 | zh_TW |
| dc.description.abstract | Transdermal administration is a very common drug delivery route currently, but it encounters a lot of restrictions. Traditionally, transdermal administration only transfers small molecule drugs or lipophilic drugs, due to the fact that macromolecular drugs and hydrophilic drugs might be blocked by the skin’s stratum corneum. Micro-scale needles have been proposed and notified to increase skin permeability recently. This micro-scale needles called microneedles. Using this microneedle array, transdermal drug delivery shows to greatly enhance the skin permeation capacity especially for macromolecular drugs. Microneedle array is widely used in drug delivery, vaccine even DNA delivery through skin. Microneedle array has a lot of advantages as compared with conventional injection. First, microneedle’s length is about 100 ~ 200μm, which reduces the risk of the needles piercing into the dermis exposed to nerve and avoids the pains during the application on the skin. Second, microneedle administration is a self-medication and does not require the assistance from professional medical personnel. Third, microneedle array can be combined with the patch as a long-term method of administration.
Using a two-stage injection, polymerization process polymeric polymethylmethacrylate (PMMA) microneedle array was formed success fully. The geometry size of PMMA microneedle array is about 1cm by 1cm. Each array of microneedle number is 6 by 6. We oberved whether the cell could be successfully attached to our material 'PMMA microneedle array.' The results show that two-stage polymerization process utilizing PMMA was feasible to produce microneedles. 3T3 cells successfully attached to the PMMA microneedle array. PMMA microneedle and metal microneedle were observed to have the similar hardness and sharpness, based on the outcomes obtained from piercing through the decellularized pigskin. In endurance tests, following ten times application of PMMA microneedle array on the decellularized pigskin, PMMA microneedle array would begin to break. After fifty times of application, PMMA microneedle array would all be broken. Under cytotoxicity tests, completely polymerized PMMA did not cause injury or toxicity to cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:10:53Z (GMT). No. of bitstreams: 1 ntu-104-R02548041-1.pdf: 2687800 bytes, checksum: 58a1c858f1feb59bf59ce5fc1b09944d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………………Ⅰ
Abstract……………………………………………………………………………Ⅱ 目錄…………………………………………………………………………………Ⅲ 圖目錄………………………………………………………………………………Ⅶ 表目錄……………………………………………………………………………… Ⅸ 緒論………………………………………………………………………………… 1 壹. 文獻回顧……………………………………………………………………… 2 1.1 皮膚生理學……………………………………………………………… 2 1.1.1 皮膚的結構……………………………………………………… 2 1.1.1.1 表皮(Epidermis)…………………………………… 3 1.1.1.2 真皮(Dermis)………………………………………… 3 1.1.1.3 皮下組織(Hypodermis)……………………………… 4 1.1.2 皮膚的附屬結構(Appendages)………………………………… 4 1.2 藥物傳輸系統(Drug Delivery System)……………………………… 5 1.2.1 藥物傳輸定義…………………………………………………… 5 1.2.2.藥物傳輸的途徑………………………………………………… 5 1.2.2.1 口服藥物(Oral Drug Delivery)…………………… 6 1.2.2.2 腸外給藥(Parenteral Drug Delivery)…………… 6 1.2.2.3 黏膜給藥(Transmucosal Drug Delivery)………… 6 1.2.2.4 結直腸給藥(Colorectal Drug Delivery)………… 7 1.2.2.5 肺部給藥(Pulmonary Drug Delivery)………………7 1.2.3 經皮給藥(Transdemal Drug Delivery)……………………… 8 1.2.3.1 第一代經皮給藥……………………………………… 9 1.2.3.2 第二代經皮給藥………………………………………10 1.2.3.3 第三代經皮給藥………………………………………11 1.3 微針(Microneedle)...……………………………………………………… 12 1.3.1 微針的相關知識…………………………………………………12 1.3.2 微針的傳輸方法…………………………………………………13 1.3.3 微針的型態………………………………………………………14 1.3.4 製作微針模型的方法……………………………………………15 1.3.4.1 光蝕刻…………………………………………………15 1.3.4.2 化學時刻………………………………………………16 1.3.4.3 雷射雕刻………………………………………………16 1.4 聚甲基丙烯酸甲酯(PMMA)………………………………………………17 1.4.1 材料組成……………………………………………………… 17 1.4.2 材料性質及優點……………………………………………… 18 1.4.3 應用…………………………………………………………… 18 貳. 實驗動機與目的…………………………………………………………… 19 2.1 研究目的……………………………………………………………… 19 2.2 研究主題之重要性…………………………………………………… 19 參. 實驗器材與方法…………………………………………………………… 21 3.1 實驗藥品 ……………………………………………………………… 21 3.2 實驗儀器 ……………………………………………………………… 23 3.3 實驗溶液配製……………………………………………………………24 3.3.1 細胞培養基配製(DMEM)…………………………………………24 3.3.2 磷酸鹽緩衝溶液 Phosphate Buffer Solution(PBS)……… 25 3.3.3 MTT試劑………………………………………………………… 25 3.3.4 Live/Dead 試劑………………………………………………… 25 3.4 微針的製作……………………………………………………………… 26 3.4.1 微針模具(PDMS)的製作………………………………………… 26 3.4.2 PMMA微針的製作…………………………………………………26 3.4.3改良過後的PMMA微針的製作……………………………………27 3.5 細胞培養(HACAT/3T3 繼代培養)……………………………………… 29 3.6 材料滅菌………………………………………………………………… 29 3.7 細胞貼附試驗…………………………………………………………… 30 3.7.1材料及溶液製備.……………………………………………… 30 3.7.2 實驗步驟 …………………………………………………………30 3.8 共軛焦顯微鏡(Confocal Microscope)觀察微針上細胞貼附生長情況31 3.8.1材料及溶液製備…………………………………………………31 3.8.2 實驗步驟 …………………………………………………………31 3.9 掃描式電子顯微鏡(SEM)觀察微針型態以及微針表層細胞貼附情況…31 3.9.1材料及溶液製備……………………………………………………31 3.9.2 固定乾燥細胞…………………………………………………… 31 3.10 MTT細胞存活率分析………………………………………………… 32 3.10.1材料及溶液製備…………………………………………………32 3.10.2 實驗步驟………………………………………………………32 3.11 雕刻機 …………………………………………………………………32 3.12 刺穿測試 ………………………………………………………………33 3.13 耐力測試 ………………………………………………………………33 3.14 壓應力測試 ……………………………………………………………33 肆. 實驗結果與討論………………………………………………………………34 4.1 PDMS微針成型 ………………………………………………………… 34 4.2 PMMA微針的型態 ……………………………………………………… 36 4.2.1 初步試做………………………………………………………… 36 4.2.2 微針製備方式的改進及最終成果 …………………………….37 4.3 SEM觀察PMMA微針陣列表層的型態結構…………………………… 40 4.4 螢光顯微鏡下觀察細胞在微針上貼附之情形……………………… 41 4.4.1 微針陣列朝上………………………………………………… 41 4.4.2 微針陣列朝下 ………………………………………………… 42 4.5 SEM觀察細胞在微針上貼附之情形……………………………………43 4.5.1 微針陣列朝上 ………………………………………………… 43 4.5.2 微針陣列朝下 ………………………………………………… 44 4.6 MTT細胞毒性測試 …………………………………………………… 45 4.7 刺穿測試 ……………………………………………………………… 46 4.8 耐力測試 ……………………………………………………………… 47 4.9 壓應力測試 …………………………………………………………… 48 伍. 結論……………………………………………………………………………49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細胞貼附 | zh_TW |
| dc.subject | 微針陣列 | zh_TW |
| dc.subject | PMMA | zh_TW |
| dc.subject | PDMS | zh_TW |
| dc.subject | microneedle array | en |
| dc.subject | PMMA | en |
| dc.subject | PDMS | en |
| dc.subject | cell attachment | en |
| dc.title | PMMA微針陣列的製備與其性質研究 | zh_TW |
| dc.title | Preparation of Polymethylmethacrylate
microneedle array and its Property | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃意真,江鴻生,林尚生(shang-sen Lin) | |
| dc.subject.keyword | 微針陣列,PMMA,PDMS,細胞貼附, | zh_TW |
| dc.subject.keyword | microneedle array,PMMA,PDMS,cell attachment, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
