請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52273完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方煒 | |
| dc.contributor.author | Shih-Wei Kong | en |
| dc.contributor.author | 康世緯 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:10:45Z | - |
| dc.date.available | 2020-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | 1. --。2009。植物工廠的事例集。農林水產省與經濟產業省彙編。日本。
2. 七维高科。2009。1stOpt使用手冊。中國。 3. 方煒(譯)。2011。完全控制型植物工廠。初版。台北: 財團法人豐年社。 4. 方煒、饒瑞佶。2004。高亮度發光二極體在生物產業的應用. 中華農學會報. 5: 432-446. 5. 方煒。2009。台灣發展精緻農業不要忽略了推動植物工廠。2009年農機與生機論文發表會。372-376。宜蘭: 中華農業機械學會。 6. 方煒。植物工廠是新世紀的關鍵產業。中國時報C6版。2010年1月6日。 7. 王慧媛。2010。環境控制下波士頓萵苣兩階段立體化栽培模式之探討。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。 8. 古在豐樹。2009。太陽光型植物工廠。1版。日本: Ohmsha株式會社。 9. 李光軒。1998。調整光質的方法對波士頓萵苣種苗栽培之影響。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。 10. 邱偉豪。2009。控制環境內波士頓萵苣立體化栽培之研究。碩士論文。台北: 國立台灣大學生物產業機電工程學研究所。 11. 高辻正基。1986。野菜工廠。4版。日本: 丸善株式會社。 12. 高倉直。2009。現在為何需要植物工廠?─糧食與能源自給的獨立溫室計畫(Autonomous House Project)─。農業與園藝84(11):1063-1067。 13. 高德錚。1986。水耕栽培-精緻蔬菜生產技術之開發。台中區農推專訓56: 22-31。 14. 張祖亮。1998。養液栽培之應用技術。種苗生產自動化技術通訊。第三期第 98003號。種苗生產自動化技術服務團。台北: 財團法人農業機械化研究發展中心。 15. 許安仁。2000。自調式類神經PID 控制於超音波馬達之應用。碩士論文。桃園: 國立中央大學機械工程研究所。 16. 蔡素蕙、高德錚、黃山內。1987。冬季蔬菜無機氮含量之研究。台中: 農業改良場研究彙報。 17. 饒瑞佶、方煒。2003a。光量與光週期對馬鈴薯組培苗生長的影響。九十二年農業機械論文發表會。台北。中華民國。 18. 饒瑞佶、方煒。2003b。光質對於彩色海芋組培苗生長之影響。九十二年農業機械論文發表會。台北。中華民國。 19. Albright, L. D., A. J. Both, R. W. Langhans, and E. F. Wheeler. 1999. Dimensionless growth curves as a simple approach to predict the vegetative growth of lettuce. Acta Hort. 507: 293-300. 20. Al-Kaisi, M., L. J. Brun, and J. W. Enz. 1989. Transpiration and evapotranspiration from maize as related to leaf area index. Agric. and forest meteorology 48: 111-116. 21. Alokam, S., C. C. Chinnappa, and D. M. Reid. 2002. Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes: differential response of alpine and prairie ecotypes. Can. J. Bot. 80(1): 72-81. 22. Al-Wakeel, S. A. M., and A. A. Hamed. 1996. Light-quality effect on growth and some biochemical aspects of mild-stressed Cucurbita pepo L. Egyptian J. Bot. 36: 217-233. 23. Ballare, C. L. 1999. Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci. 4(3): 97-102. 24. Barnes, S. A., R. B. McGrath, and N. -H. Chua. 1997. Light signal transduction in plants. Trends Cell Biol. 7: 21-26. 25. Both A. J., L. D. Albright, and R. W. Langhans. 1998. Coordinated management of daily PAR integral and carbon dioxide for hydroponic lettuce production. Acta Hort. 456: 45-51. 26. Both, A. J., L. D. Albright, and R. W. Langhans. 1999. Design of a demonstration greenhouse operation for commercial hydroponic lettuce production. ASAE Paper. 99-4123. 27. Both, A. J., L. D. Albright, R. W. Langhans, R. A. Reiser, and B. G. Vinzant. 1997. Hydroponic lettuce production influenced by integrated supplemental light levels in a Controlled environment agriculture facility: experimental results. Acta Hort. 418: 45-51. 28. Brazaityté, A., R. Ulinskaité, P. Duchovskis, G. Samuoliené, J. B. Siksnianienė, J. Jankauskiené, G. Sabqieviené, K. Baranouskis, G. Staniené, G. Tamulaitis, Z. Bliznikas, and A. Zukauskas. 2006. Optimization of lighting spectrum for photosynthetic system and productivity of lettuce by using light-emitting diodes. Acta Hort. 711: 183-188. 29. Briggs, W. R., and Christie, J. M. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7: 204-210. 30. Chave, J., R. Condit, S. Lao, J. Caspersen, R. Foster, and S. Hubbell. 2003. Spatial and temporal variation of biomass in a tropical forest: results from alarge census plot in Panama. Journal of Ecology 91: 240-252. 31. Christie, J. M. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58: 21-45. 32. Chung, J. P., C. Y. Huang, and T. E. Dai. 2010. Spectral effects on embryogenesis and plant-let growth of Oncidium ‘Gower Ramsey’. Sci. Hort. 124: 511-516. 33. Ciolkosz, D. D., L. D. Albright, and A. J. Both. 1999. Modeling evapotranspiration in a greenhouse lettuce crop. Transactions of the ASAE. 34. Ciolkosz, D. E., L. D. Albright, and A. J. Both. 1998. Characterizing evapotranspiration in a greenhouse lettuce crop. Acta Horticulturae. 456: 255-261. 35. Cosgrove, D. J. 1981. Rapid suppression of growth by blue light. Plant Physiol. 67: 584-590. 36. Demmig-Adams, B., and W. W. Adams. 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599-626. 37. Dougher, T. A. O., and B. Bugbee. 2001. Evidence for yellow light suppression of lettuce growth. Photochemistry and Photobiology 73: 208-212. 38. Drozdova, I. S., V. V. Bondar, N. G. Bukhov, A. A. Kotov, L. M. Kotova, S. N. Maevskaya, and A. T. Mokronosov. 2001. Effects of light spectral quality on morphogen-esis and source–sink relations in radish plant. Russ. J. Plant Physiol. 48: 415-420. 39. Fan, X. X., Z. G. Xu, X. Y. Liu, C. M. Tang, L. W. Wang, and X. L. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Hort. 153: 50-55. 40. Fang, W., and R. C. Jao. 2002. Development of a flexible lighting system for plant related research using super bright red and blue light-emitting diodes. Acta Hort. 578: 133-139. 41. Folta, K. M. 2004. Green light stimulates early stem elongation, antagonizing lightmediated growth inhibition. Plant Physiol. 135: 1407-1416. 42. Frechilla, S., L. D. Talbott, R. A. Bogomolni, and E. Zeiger. 2000. Reversal of blue lightstimulated stomatal opening by green light. Plant and Cell Physiol. 41: 171-176. 43. Giliberto, L., G. Perrotta, P. Pallara, J. L. Weller, P. D. Fraser, P. M. Bramley, A. Fiore, M. Tavazza, and G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137: 199-208. 44. Goins, G. D. 2001. Performance of salad-type plants grown under narrowspectrum light-emitting diodes in a controlled environment. Proceedings of Bioastronautics Investigators' Workshop, Jan. 2001, Galveston, TX. 45. Goto, E., A. J. Both, L. D. Albright, R. W. Langhans, and A. R. Leed. 1996. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Hort. 440: 205-210. 46. Govindjee, R. 1964. Emerson enhancement effect in chloroplast reactions. Plant physiol. 39: 10-14. 47. Heinen, M. 1999. Analytical growth equations and their Genstat 5 equivalents. Netherlands Journal of Agricultural Sci. 47: 67-89. 48. Heo, J., C. Lee, D. Chakrabarty, and K. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regul. 38: 225-230. 49. Hoffmann, W., and H. Poorter. 2002. Avoiding bias in calculations of relative growth rate. Annals of Botany 90: 37-42. 50. Hogewoning, S. W., P. Douwstra, G. Trouwborst, W. van Ieperen, and J. Harbinson. 2010. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 61: 1267-1276. 51. Hopkins, W. G., and N. P. A. Hunter. 2008. Introduction to plant physiology. 4th ed., London: Wiley and Son. 52. Hunt, R. 1981. The fitted curve in plant growth studies. Mathematics and Plant Physiology 283-298. Academic Press. London. 53. Hunt, R. 1982. Plant Growth Curves: The Functional Approach to Plant Growth Analysis. Edward Arnold, London. 54. Islam, M. A., D. Tarkowská, J. L. Clarke, D. Blystad, H. R. Gisler?d, S. Torre, and J. E. Olsena. 2014. Impact of end-of-day red and far-red light on plant morphologyand hormone physiology of poinsettia. Scientia Hort. 174: 77-86. 55. Jao, R. C., and W. Fang. 2004. Effects of frequency and duty ratio on the growth of potato plantlets in vitro using LEDs. HortScience 39: 375-379. 56. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45: 1809-1814. 57. Kataoka, I., A. Sugiyama, and K. Beppu. 2003. Role of ultraviolet radiation in accumulation of anthocyanin in berries of ‘Gros Colman’ grapes (Vitis vinifera L.). J. Japan Soc. Hort. Sci. 72: 1-6. 58. Keller, M., and G. Hrazdina. 1998. Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. Am. J. Enol. Vitic. 49: 341-349. 59. Kim H. H., R. M. Wheeler, and J. C. Sager. 2006. Evaluation of lettuce growth using supplemental green light with red and blue light-emitting diodes in a controlled environment: a review of research at Kennedy Space Center. Acta Hort. 711: 111-119. 60. Kim, H. H., G. D. Goins, R. M. Wheeler, and J. C. Sager. 2004a. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience 39: 1617-1622. 61. Kim, H. H., R. M. Wheeler, Kim, J. C. Sager, and G. D. Gains. 2004b. A comparison of growth and photosynthetic characteristics of lettuce grown under red and blue light-emitting diodes (LEDs) with and without supplemental green LEDs. Acta Hort. 659: 467-475. 62. Klein, R. M. 1990. Failure of supplementary ultraviolet radiation to enhance flowercolor under greenhouse conditions. HortScience 25(3): 307-308. 63. Klein, R. M. 1992. Effects of green light on biological systems. Biol. Rev. 67: 199-284. 64. Kopsell, D. A., and D. E. Kopsell. 2008. Genetic and environmental factors affecting plant lutein/zeaxanthin. Agro Food Ind. Hi-Tech. 19: 44-46. 65. Kozai, T., K. Ohyama, and C. Chun. 2006. Commercialized closed systems with artificial lighting for plant production. Acta Hort. 711: 61-70. 66. Lefsrud, M. G., D. A. Kopsell, and C. E. Sam. 2008. Irradiance from distinct wavelengthlight-emitting diodes affect secondary metabolites in Kale. HortScience 43(7): 2243-2244. 67. Li, Q., and C. Kubota. 2009. Effects of supplemental light quality on growth and phyto-chemicals of baby leaf lettuce. Environ. Exp. Bot. 67(1): 59-64. 68. Lin, C., M. Ahmad, D. Gordon, and A. R. Cashmore. 1995. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc. Natl. Acad. Sci. 92: 8423-8427. 69. Lin, Y., and C. L. Cheng. 1997. A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. Plant Cell 9: 21-35. 70. Liu, H., X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, and C. Lin. 2008. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Sci. 322: 1535-1539. 71. McCree, K. J. 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorol. 9: 191-216. 72. McMahon, T. A., and J. T. Bonner. 1983. On Size and Life. Scientific American Books, New York, New York. 73. McNellis, T. W., and X. W. Deng. 1995. Light control of seedling morphogenetic pattern. The Plant Cell 7: 1749-1761. 74. Moorby, J., and C.J. Graves. 1980. Root and air temperature effects on growth and yield of tomatoes and lettuce. Acta Hort. 98: 29-37. 75. Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., and Kurata, K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 45: 189-198. 76. Okamoto, K., T. Yanagi, and S. Kondo. 1997. Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light. Acta Hort. 435: 149-158. 77. Okamoto, K., T. Yanagi, S. Takita, M. Tananka, T. Higuchi, Y. Ushida, and H. Watamabe. 1996. Development of plant growth apparatus using blue and red as artificiallight source. Acta Hort. 440: 111-116. 78. Paine, C. E. T., K. E. Harms, S. A. Schnitzer, and W. P. Carson. 2008. Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40: 432-440. 79. Paine, C. E. T., T. R. Marthews, D. R. Vogt, D. Purves, M. Rees, A. Hector, and L. A. Turnbull. 2012. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution 3: 245-256. 80. Perez-Balibrea, S., D. A. Moreno, and C. Garcia-Viguera. 2008. Influence of lightonhealthpromoting phytochemicals of broccoli sprouts. J. Sci. Food Agric. 88: 904-910. 81. Pinho, P., R. Lukkala, L. Sarkka, E. Tetri, R. Tahvonen, and L. Halonen. 2007. Evaluation of lettuce growth under multi-spectral-component supplemental solid state lighting in greenhouse Environment. International Review of Electrical Engineering 2: 6. 82. Preece, J. E., and P. E. Read. 1993. The biology of horticulture: an introductory textbook. John Wiley & Sons, Incorporation, New York. 83. Ramalho, J. C., N. C. Marques, J. N. Semedo, M. C. Matos, and V. L. Quartin. 2002. Photosynthetic performance and pigment composition of leaves fromtwo tropical species is determined by light quality. Plant Biol. 4: 112-120. 84. Ricklefs, R. E. 2010. Embryo growth rates in birds and mammals. Functional Ecology 24: 588-596. 85. Salisbury, F. B., and C. W. Ross. 1992. Plant physiology. Wadsworth Publishing Company. Belmont. 86. Samuoliene, G., A. Brazaityte, R. Sirtautas, A. Novickovas, and P. Duchovskis. 2012. The effect of supplementary led lighting on the antioxidant and nutritionalproperties of lettuce. Acta Hort. 952: 835-841. 87. Schmitt, J., and R. D. Wulff. 1993. Light spectral quality, phytochrome and plant competition. Trends Ecol. Evol. 8: 47-51. 88. Schuerger, A.C., C. S. Brown, and E. C. Stryjewski. 1997. Anatomical features of pepperplants (Capsicum annuum L.) grown under red light-emitting diodes supple-mented with blue or far-red light. Ann. Bot. 79(3): 273-282. 89. Schwartzbach, S. D. 1990. Photocontrol of organelle biogenesis in Euglena. Photochemistry and Photobiology 51: 231-254. 90. Senger, H. 1982. The effect of blue light on plants and microorganisms. Phytochem. Photobiol. 35: 911-920. 91. Shimazaki, K.-I., M. Doi, S. M. Assmann, and T. Kinoshita. 2007. Light regulation of stomatal movement. Ann. Rev. Plant Biol. 58: 219-247. 92. Siefermann-Harms, D. 1985. Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochimica et Biophysica Acta 811: 325-355. 93. Siefermann-Harms, D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum 69: 561-568. 94. Sillett, S. C., R. Van Pelt, G. W. Koch, A. R. Ambrose, A. L. Carroll, M. E. Antoine, and B. M. Mifsud. 2010. Increasing wood production through old age in tall trees. Forest Ecology and Management 259: 976-994. 95. Smith, H. 1993. Sensing the light environment: the functions of the phytochrome family. R.E. Kendrick and G.H.M. Kronenberg (eds.). Photomorphogenesisin plants. Kluwer Academic Publ. Dordrecht. 377-416. 96. Sun, J., J. N. Nishio, and T. C. Vogelmann. 1998. Green light drives CO2 fixation deep within leaves. Plant Cell Physiol. 39: 1020-1026. 97. Taiz, L. and E. Zeiger. 2006. Plant physiology. The Benjamin/Cummings Publishings Company. Incorporation. Redwood City. 98. Takemiya, A., S.-i. Inoue, M. Doi, T. Kinoshita, and K.-i Shimazaki. 2005. Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17: 1120-1127. 99. Talbott, L. D., G. Nikolova, A. Ortiz, I. Shmayevich, and E. Zeiger. 2002. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. Amer. J. of Bot. 89: 366-368. 100. Talbott, L. D. 2006. Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassiumdependent, morning phase of movement. Plant Cell Physiol. 47: 332-339. 101. Talbott, L. D., G. Nikolova, A. Ortiz, I. Shmayevitch, and E. Zeiger. 2002. Green light reversal of blue light-stimulated stomatal opening is found in a wide range of plant species. Am. J. Bot. 89: 366-368. 102. Tei, F., P. Benincasa, and M. Guiducci. 2003. Critical Nitrogen Concentration in Lettuce. XXVI International Horticultural Congress: Toward Ecologically Sound Fertilization Strategies for Field Vegetable Production 627: 187-194. 103. Terashima, I., T. Fujita, T. Inoue, W. S. Chow, and R. Oguchi. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 50: 684-697. 104. Terfa, M. T., K. A. Solhaug, H. R. Gisler?d, J. E. Olsen, and S. Torre. 2013. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa hybrida but does not affect time to flower opening. Physiol. Plant 148: 146-159. 105. Thornley, J., and J. France. 2007. Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences. CAB International, Oxon. UK. 106. Thomas, S. 1996. Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. American Journal of Botany 83: 556-566. 107. Tsormpatsidis, E., R. G. C. Henbest, F. J. Davis, N. H. Battey, P. Hadley, and A. Wagstaffe. 2008. UVirradiance as amajor influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ. Exp. Bot. 63: 232-239. 108. Ventrella, D., P. Santamaria, V. Magnifico, F. Serio, A. De Boni, and S. Cordella. 1993. Influenza dell’azoto sull’accumulo dei nitrati in foglie di rucola (Eruca sativa Miller)allevata a differenti Condizioni di temperatura e irradianza. Riv. di Agron. 27: 653-658. 109. Vergeer, L. H. T., T. L. Aarts, and J. D. Degroot. 1995. The wasting disease and the effect of abiotic factors (light-intensity, temperature, salinity) and infection with labyrinthula-zosterae on the phenolics content of zostera-marina shoots. Aquat. Bot. 52: 35-44. 110. Voipio, I., and J. Autio. 1995. Responses of red-leaved lettuce to light intensity, UV-Aradiation and root zone temperature. Acta Hort. 399: 183-187. 111. Wang, Y., and K. M. Folta. 2013. Contributions of green light to plant growth and development. Am. J. Bot. 100: 70-78. 112. Wenke, L., and Y. QiChang. 2012. Effects of day-night supplemental UV-A on growth, photosynthetic pigments and antioxidant system of pea seedlings in glasshouse. Afr. J. Biotechnol. 11(82): 14786-14791. 113. Whitelam, G., and K. Halliday. 2007. Light and Plant Development. Blackwell Publishing, Oxford. 114. Xu, H. L., Q. Xu, F. L. Li, Y. Feng, F. Qin, and W. Fang. 2012. Applications of xerophytophysiology in plant production—LED blue light as a stimulus improved the tomato crop. Scientia Hort. 148: 190-196. 115. Yanagi, T., K. Okamoto, and S. Takita. 1996. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Hort. 440: 117-122. 116. Yanovsky, M. J., T. M. Alconada-Magliano, M. A. Mazzella, C. Gatz, B. Thomas, and J. J. Casal. 1998. A affects stem growth, anthocyanin synthesis, sucrosephosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta 205: 235-241. 117. Yorio, N. C., R. M. Wheeler, G. D. Goins, M. M. Sanwo-Lewandowski, C. L. Mackowiak, C. S. Brown, J. C. Sager, and G. W. Stutte. 1998. Blue light requirement for crop plantsused in bioregenerative life support system. Life Support Biosph. Sci. 5(2): 119-128. 118. Zeiger, E., and P. K. Hepler. 1977. Light and stomatal function: blue light stimulates swelling of guard cell protoplasts. Sci. 196: 887-889. 119. Zhou, Y., and B. R. Singh. 2002. Red light stimulates flowering and anthocyanin biosynthesis in American cranberry. Plant Growth Regul. 38: 165-171. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52273 | - |
| dc.description.abstract | 本研究旨在建立適用於完全人工光型植物工廠內栽培波士頓萵苣的監控軟硬體與決策支援系統。使用可程式控制器建立了床架上的監控系統,亦開發了量產系統的遠端管理系統。前者包括了可控制栽培床架上各層的溫度、濕度、光量、二氧化碳濃度與養液循環系統。後者提供使用者在遠端即可針對栽培室內的環境進行溫度、濕度、二氧化碳、養液EC與pH與光量等的監控、亦可量測植物的間接生理參數,譬如:濃縮養液補充量與補水量。同一監控軟體還具備生長過程中鮮重的預測、收穫後產量的預估與提供即時影像。
本研究建立了六個理論模型,分別為:(1) 依據收穫前兩週累計的濃縮養液吸收量預測收穫時萵苣鮮重之模型,(2) 依據收穫前兩週累計的補水量與空氣蒸汽壓差預測收穫時萵苣鮮重之模型,(3) 依據日累積光量與二氧化碳濃度探討對波士頓萵苣乾重影響之模型,(4) 依據日累積光量、光譜與二氧化碳探討對波士頓萵苣鮮重生長的影響模型,(5) 基於植物工廠氣密程度 (以每小時換氣率為指標) 探討不同光量與二氧化碳濃度的耦合控制模型,(6) 不同光譜波段對於波士頓萵苣鮮重增加貢獻度的分析模型。 模型1, 2, 3, 4可模擬各環境參數與波士頓萵苣鮮重或乾重之關係,可用於植物工廠管理之決策支援。模型5適合使用者針對自家植物工廠的氣密性來求出可有最低操作成本 (燈光電費與二氧化碳) 的最適光量與二氧化碳濃度設定參數值。模型6提供了評估不同光譜波段對於收穫時鮮重貢獻度的方法,可提供人工光源製造商針對所欲栽培的作物提供適合的光譜建議。 生長過程中萵苣鮮重的偏低、濃縮養液補充量或補水量的不足或偏高都是在提供即時的警訊,提醒管理者注意。可依據訂單大小而進行生產排程的規劃是植物工廠有別於傳統農業的優勢之一,本研究建立的產能預測功能對於生產管理與行銷應可提供助益。 | zh_TW |
| dc.description.abstract | This study focuses on the development of monitoring and control systems and decision support models for the production of Boston lettuce in a plant factory using artificial light. Programmable logic controller was used for the development of on-site monitoring and control system. The system can control the temperature, relative humidity, carbon dioxide concentration, EC and pH of nutrient and light intensity of each layer on a cultural bench for the production of hydroponically grown lettuce. A remote monitoring system was also developed capable of monitoring parameters mentioned above and also the amount of concentrated nutrients and supplemented water supplied during the growth period were recorded. The system also provided with the capability of predicting the fresh mass during the cultural period and harvested fresh mass. The real time image of plants can also be recorded through web camera.
Totally six theoretical models were developed. They are: (1) Prediction of harvested fresh mass based on accumulative absorption of concentrated nutrient solutions during the growth periods. (2) Prediction of harvested fresh mass based on accumulative make-up water and vapor pressure deficit of air during the growth periods. (3) Dry mass prediction model based on daily light integral and carbon dioxide concentration. (4) Fresh mass prediction model based on daily light integral, carbon dioxide concentration and light spectrum. (5) Optimizing operating cost based on varying quanta and carbon dioxide concentration subject to hourly air exchange rate of the plant factory. (6) Relative contributions of various visible spectra on harvested dry mass of lettuce. Models 1, 2, 3 and 4 can be served as decision support tools capable of providing calculated harvested fresh and dry mass based on proposed growth related parameters. Model 5 is helpful in optimizing amount of light intensity and concentration of carbon dioxide subjected to the air tightness of the plant factory. Model 6 provided a systematic approach for the evaluation of the relative contribution of different spectra for the accumulation of harvested fresh mass. This can be very helpful to the manufacturers for the development of artificial grow light for plants. During the growth periods, situations such as low growth rate, too much or too little supplied of concentrated nutrient solutions and make-up water were all symptoms for none efficient growth and can be considered as early alarm. The function to predict amount of harvested fresh mass is also a great tool for production scheduling and marketing. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:10:45Z (GMT). No. of bitstreams: 1 ntu-104-D99631003-1.pdf: 4372883 bytes, checksum: 9c47aafe0caea0a0e4a51d4dd27046a0 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 第一章 前言與研究目的 1
第二章 文獻探討 5 2.1 植物工廠 5 2.1.1 太陽光利用型植物工廠 6 2.1.2 完全控制型植物工廠 7 2.1.3 太陽與人工光併用型植物工廠 7 2.2 環境條件對於作物之影響 8 2.2.1 空氣條件對植物生長之影響 9 2.2.2 光照條件對植物生長之影響 12 2.2.3 光譜條件對植物生長之影響 13 2.2.4 養液條件對於植物生長之影響 17 2.2.5 植物體生長的蒸散作用 19 2.2.6 作物之硝酸鹽含量 20 2.3 完全控制型植物工廠的環境控制 23 2.3.1 光源種類 23 2.3.2 養液管理 26 2.3.3 二氧化碳施放 28 2.4 植物生長模型 29 2.4.1 植物生長模型的基本函數形式 29 2.4.2 萵苣生長模型 32 第三章 材料與方法 35 3.1 環控系統開發 35 3.1.1 控制系統架構 35 3.1.2 栽培層架 37 3.1.3 光控制系統 38 3.1.4 空氣環境控制系統 41 3.1.5 養液控制 44 3.2 透過濃縮養液補充量與補水量建置萵苣產量評估系統 46 3.2.1 萵苣栽培方法 46 3.2.2 量產排程 47 3.2.3 補水量與濃縮養液補充量量測 49 3.2.4 分析模型 51 3.2.5 波士頓萵苣基礎生長參數量測 54 3.2.6 統計分析 54 3.2.7 紀錄軟體 54 3.3 光量與環境二氧化碳耦合控制模式之開發 55 3.3.1 萵苣乾重生長模型 55 3.3.2 二氧化碳散逸模型 57 3.3.3 換氣率計算 58 3.3.4 迴歸軟體 58 3.3.5 模擬之植物工廠參數 59 3.4 不同光源對於作物生長效益影響模型之開發 60 3.4.1 試驗光源 60 3.4.2 萵苣栽培與乾鮮重量測 62 3.4.3 分析模型 63 3.4.4 光譜波段選擇 64 3.4.5 統計分析 64 3.5 以模型分析綠光與黃橙光對於波士頓萵苣鮮重之影響 65 3.5.1 試驗光源 65 3.5.2 萵苣栽培方法 67 3.5.3 分析模型 67 3.5.4 光譜波段選擇 67 3.5.5 統計分析 68 3.6 萵苣生長參數模型整合 69 3.6.1 分析模型 69 3.6.2 分析方法 70 3.7 植物工廠決策支援與管理系統之建置 71 3.7.1 網頁伺服器 73 3.7.2 資料記錄與運算 73 第四章 結果與討論 75 4.1 實驗型植物生長層架之開發 75 4.1.1 近端觸控螢幕操作介面 75 4.1.2 遠端控制程式之操控與紀錄 78 4.1.3 地上部環境因子控制 79 4.1.4 養液控制 81 4.2 透過濃縮養液補充量與補水量建置萵苣產量評估系統 85 4.2.1 波士頓萵苣基礎生長參數量測 85 4.2.2 濃縮養液補充量、補水量與鮮重關係 86 4.2.3 預測模型適用範圍 96 4.2.4 穩態系統中濃縮養液吸收量與蒸散量作為預警系統之探討 97 4.2.5 不同栽培設備下預測模型的建立方法 99 4.3 光量與環境二氧化碳耦合控制模式之開發 100 4.3.1 萵苣乾重生長模型 100 4.3.2 換氣率量測 102 4.3.3 模擬不同換氣率下植物工廠之二氧化碳成本 103 4.4 不同光源對於作物生長效益影響模型之開發 106 4.4.1 萵苣在不同光源下之栽種結果 106 4.4.2 不同光譜對萵苣鮮重影響之分析結果 108 4.5 以模型分析綠光與黃橙光對於波士頓萵苣鮮重之影響 113 4.5.1 萵苣在不同光源下之栽種結果 113 4.5.2 不同綠藍光比值之光譜對萵苣鮮重影響之分析結果 115 4.6 萵苣生長參數模型整合 122 4.7 植物工廠決策支援與管理系統之建置 126 4.7.1 燈光控制 128 4.7.2 養液控制 129 4.7.3 二氧化碳控制 130 4.7.4 植物間接生理參數量測 131 4.7.5 產量推估 132 4.7.6 波士頓萵苣生長模擬 134 4.7.7 即時影像 135 4.7.8 即時警報系統 136 第五章 結論 137 參考文獻 139 | |
| dc.language.iso | zh-TW | |
| dc.subject | 環境控制 | zh_TW |
| dc.subject | 決策支援 | zh_TW |
| dc.subject | 植物工廠 | zh_TW |
| dc.subject | 萵苣 | zh_TW |
| dc.subject | 植物生長模型 | zh_TW |
| dc.subject | Boston lettuce | en |
| dc.subject | environmental control | en |
| dc.subject | growth model | en |
| dc.subject | decision support | en |
| dc.subject | plant factory | en |
| dc.title | 植物工廠萵苣量產整合模型與決策支援 | zh_TW |
| dc.title | Integrated Model and Decision Support System for Lettuce Production in Plant Factory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林達德,陳林祈,楊雯如,邱奕志 | |
| dc.subject.keyword | 植物工廠,決策支援,植物生長模型,環境控制,萵苣, | zh_TW |
| dc.subject.keyword | plant factory,decision support,growth model,environmental control,Boston lettuce, | en |
| dc.relation.page | 151 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
