請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52271完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬劍清 | |
| dc.contributor.author | Chen-Yu Chien | en |
| dc.contributor.author | 簡宸煜 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:10:42Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | [1] C. C. Ma and C. C. Chang, “Application of Image Processing and Computer Cluster in the Development of Full-Field Measurement for Electronic Speckle Pattern Interferometry and Digital Image Correlation,” Doctoral Dissertation, Department of mechanical engineering, National Taiwan University, 2012.
[2] J. Xavier, A. M. R. Sousa, J. J. L. Morais, V. M. J. Filipe, and M. Vaz, “Measuring Displacement Fields by Cross-Correlation and a Differential Technique: Experimental Validation,” Optical Engineering, vol. 51, no. 4, pp. 043602–1–043602–12, 2012. [3] Z. X. Chen, J. Liang, C. Guo, and H. Hu, “Application of the Speckle Technique for Three-Dimensional Deformation Measurement,” Optical Engineering, vol. 51, no. 1, pp. 013604–1–013604–7, 2012. [4] M. M. Frocht, Photoelasticity, vol. 1. J. Wiley, 1941. [5] A. J. Durelli and V. J. Parks, Moiré Analysis of Strain. Prentice-Hall Englewood Cliffs, New Jersey, 1970. [6] T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley-VCH, 2005. [7] M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer Verlag, 2009. [8] C. C. Ma and K. M. Hung, “Exact Full-Field Analysis of Strain and Displacement for Circular Disks Subjected to Partially Distributed Compressions,” International Journal of Mechanical Sciences, vol. 50, no. 2, pp. 275–292, 2008. [9] J. N. Butters and J. A. Leendertz, “Speckle Pattern and Holographic Techniques in Engineering Metrology,” Optics and Laser Technology, vol. 3, no. 1, pp. 26–30, 1971. [10] O. Løkberg and K. Høgmoen, “Use of Modulated Reference Wave in Electronic Speckle Pattern Interferometry,” Journal of Physics E: Scientific Instruments, vol. 9, no. 10, pp. 847–851, 1976. [11] Y. H. Huang and C. C. Ma, “Experimental Measurements and Finite Element Analysis of the Coupled Vibrational Characteristics of Piezoelectric Shells,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 59, no. 4, pp. 785–798, 2012. [12] G. Wang, Y. J. Li, and H. C. Zhou, “Application of the Radial Basis Function Interpolation to Phase Extraction from a Single Electronic Speckle Pattern Interferometric Fringe”, Applied Optics, vol. 50, no. 19, pp. 3110-3117, 2011. [13] C. Y. Chang, S. H. Lin, and C. C. Ma, “High-Resolution Electronic Interferometry for the Measurement of In-Plane Vibration,” Applied Optics, vol. 51, no. 24, pp. 5773–5779, 2012. [14] T. Siebert, H. R. Schubach, and K. Splitthof, “Recent Developments and Applications for Optical Full Field Strain Measurement Using ESPI and DIC,” Proceedings of SPIE, vol. 7997, pp. 79972B, 2010. [15] D. Zhang, X. Zhang, and G. Cheng, “Compression Strain Measurement by Digital Speckle Correction”, Exp. Mech. 39 62-5, 1999. [16] B. K. Bay, “Texture Correlation—a Method for the Measurement of Detailed Strain Distributions within Trabecular Bone”, J. Orthop. Res 13 258–67, 1995. [17] D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital Speckle-Displacement Measurement Using a Complex Spectrum Method”, Appl. Opt. 32 1839–49, 1993. [18] G. R. Gaudette, J. Todaro, I. B. Krukenkamp, and F. P. Chiang, “Computer Aided Speckle Interferometry: a Technique for Measuring Deformation of the Surface of the Heart” Ann. Biomed. Eng. 29 775–80, 2001. [19] M. Sjodahl, and L. R. Benckert, “Electronic Speckle Photography: Analysis of an Algorithm Giving the Displacement with Subpixel Accuracy”, Appl. Opt.32 2278–84, 1993. [20] M. Sjodahl, “Accuracy in Electronic Speckle Photography”, Appl. Opt. 36 2875–85, 1997. [21] R. J. Adrian, “Twenty Years of Particle Image Velocimetry,” Experiments in Fluids, vol. 39 159–69, 2005. [22] D. J. White, W. A. Take, and M. D. Bolton “Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry,” Geotechnique, vol. 53 619–31, 2003. [23] B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-ray Tomography,” Experimental Mechanics, vol. 39, no. 3, pp. 217–226, 1999. [24] B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate Measurement of Satellite Antenna Surface Using Three-Dimensional Digital Image Correlation Technique,” Strain, vol. 45 194–200, 2009. [25] Z. Sun, J. S. Lyons, and S. R. McNeill, “Measuring Microscopic Deformations with Digital Image Correlation,” Optics And Lasers in Engineering, vol. 27, no. 4, pp. 409–428, 1997. [26] M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning Electron Microscopy for Quantitative Small and Llarge Deformation Measurements Part II: Experimental Validation for Magnifications from 200 to 10,000,” Experimental Mechanics, vol. 47, no. 6, pp. 789–804, 2007. [27] C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Full-Field Measurements of Large Deformations in Soft Materials Using Confocal Microscopy and Digital Volume Correlation,” Experimental Mechanics, vol. 47, no. 3, pp. 427–438, 2007. [28] X. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale Deformation and Cracking Studies of Advanced Metal Evaporated Magnetic Tapes Using Atomic Force Microscopy and Digital Image Correlation Techniques,” Materials science and technology, vol. 22, no. 7, pp. 835–844, 2006. [29] H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction,” Experimental Mechanics, vol. 29, no. 3, pp. 261–267, 1989. [30] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21–36, 2003. [31] 張景媖,馬劍清,「數位影像相關法應用於跨尺度跨領域靜態及動態全域位移與應變精密量測」, 碩士論文, 機械工程學研究所, 台灣大學, 2013。 [32] 周宛萱,馬劍清,「建構高精度數位影像相關法並應用於土木結構動態系統及奈米材料微系統的變形量測」, 碩士論文, 機械工程學研究所, 台灣大學, 2014。 [33] 葉智強,廖文正,「添加高強度彎鉤型鋼纖維之高強度鋼筋混凝土橋柱之反覆側推行為分析與模擬」, 碩士論文, 土木工程學研究所, 台灣大學, 2015。 [34] C. C. Chang, Y. N. Huang, B. A. Chen, S. Epackachi, and A. Whittaker, “An Experimental Study Of The In-Plane Cyclic Behavior Of Low Aspect Ratio SC Wall Piers,” In 23rd Conference on Structural Mechanics in Reactor Technology, 2015。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52271 | - |
| dc.description.abstract | This thesis uses Digital Image Correlation (DIC) technique developed by our
laboratory for experimental measurement of deformation of solids and structures for multi-scale and interdisciplinary problems. Digital Image Correlation is a non-contact and full-field measurement technique. The advantage of Digital Image Correlation is the simplicity and convenience of experiment setup. Recording the images of the deformed object, Digital Image Correlation has ability to measure displacement and strain fields rely on our self-developed image processing technique. Using high-speed camera while facing dynamic problem, though the issue of micrometer-scale-deformation problem can also be measured by useing high-resolution microscope. The measurement of deformation for large structures in civil engineering is an important applications and are presented in the paper. The deformation of lithium battery during the charge anf discharge process and the tensile test of carbon fiber composite material are also investigated. The results obtained from the Digital Image Correlation method are compared with that obtained by other experimental techniques to verify its accuracy and reliability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:10:42Z (GMT). No. of bitstreams: 1 ntu-104-R02522510-1.pdf: 21656555 bytes, checksum: ef047845ae6117f5dafda8e9450771d1 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 .................................................................................................................................. i
摘要................................................................................................................................. v Abstract.......................................................................................................................... vii 目錄................................................................................................................................ ix 圖目錄............................................................................................................................ xii 表目錄......................................................................................................................... xxiii 第一章前言 .............................................................................................................. 1 1.1 研究背景...................................................................................................... 1 1.2 文獻回顧...................................................................................................... 4 1.3 內容簡介...................................................................................................... 6 第二章 數位影像相關法基本原理與實驗儀器介紹.............................................. 9 2.1 數位影像相關法基本運作原理.................................................................. 9 2.2 數值向量化運算及平行運算.................................................................... 12 2.3 數位影像相關法之影像追蹤原理與實驗操作流程................................ 16 2.4 數位影像相關法數據分析之重要參數.................................................... 19 2.4.1 時間參數........................................................................................ 20 2.4.2 空間參數........................................................................................ 20 2.4.3 半窗格............................................................................................ 21 2.5 實驗儀器介紹............................................................................................ 22 2.5.1 應變規訊號制約放大器................................................................ 22 2.5.2 NDI Certus HD 光學感測器.......................................................... 25 2.5.3 MTS 810 伺服液壓試驗系統....................................................... 26 第三章 應用 DIC 於碳纖複合材料拉伸試驗之量測........................................... 29 3.1 拉伸試驗介紹............................................................................................ 30 3.2 碳纖維複合材料拉伸試驗........................................................................ 32 3.2.1 不同廠家之碳纖維性質比較........................................................ 33 3.2.2 碳纖維改良測試............................................................................ 35 3.3 討論............................................................................................................ 38 第四章 應用 DIC 於電池充放電時變形之量測................................................... 77 4.1 布拉格光纖光柵簡介................................................................................ 77 4.2 實驗結果.................................................................................................... 78 4.3 討論............................................................................................................ 81 第五章 應用 DIC 於土木結構系統量測............................................................. 105 5.1 應用DIC 於高強度鋼纖維鋼筋混凝土橋柱反覆側推實驗量測......... 105 5.1.1 圓形橋柱試體設計...................................................................... 106 5.1.2 實驗結果...................................................................................... 107 5.2 應用DIC 於鋼板混凝土複合牆反覆載重試驗之量測......................... 135 5.2.1 鋼板混凝土複合牆試體設計...................................................... 136 5.2.2 實驗結果...................................................................................... 136 5.3 討論.......................................................................................................... 164 第六章 結論與未來展望..................................................................................... 165 6.1 結論.......................................................................................................... 165 6.2 未來展望.................................................................................................. 167 參考文獻 ...................................................................................................................... 169 | |
| dc.language.iso | zh-TW | |
| dc.subject | 應變 | zh_TW |
| dc.subject | 數位影像相關法 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 高精密量測 | zh_TW |
| dc.subject | 跨領域 | zh_TW |
| dc.subject | 跨尺度 | zh_TW |
| dc.subject | 位移 | zh_TW |
| dc.subject | high-resolution measurement | en |
| dc.subject | strain | en |
| dc.subject | displacement | en |
| dc.subject | interdisciplinary | en |
| dc.subject | Digital image correlation | en |
| dc.subject | Image processing | en |
| dc.subject | multi-scale | en |
| dc.title | 應用數位影像相關法於土木結構及碳纖維性質與電池表面變化之量測 | zh_TW |
| dc.title | Application of the Digital Image Correlation Technique in Civil Structure, Carbon Fiber and Lithium Battery Deformation Problems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張國鎮,黃尹男,張敬源 | |
| dc.subject.keyword | 數位影像相關法,影像處理,高精密量測,跨領域,跨尺度,位移,應變, | zh_TW |
| dc.subject.keyword | Digital image correlation,Image processing,high-resolution measurement,multi-scale,interdisciplinary,displacement,strain, | en |
| dc.relation.page | 172 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 21.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
