請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52264
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賈景山(Jean-San Chia) | |
dc.contributor.author | Dai-Ling Wu | en |
dc.contributor.author | 吳岱陵 | zh_TW |
dc.date.accessioned | 2021-06-15T16:10:34Z | - |
dc.date.available | 2020-09-24 | |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | Andrews, E., Seaman, W.T., and Webster-Cyriaque, J. (2009). Oropharyngeal carcinoma in non-smokers and non-drinkers: a role for HPV. Oral Oncol 45, 486-491. Arredouani, A., Yu, F., Sun, L., and Machaca, K. (2010). Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 123, 2155-2162. Brizel, D.M. (2007). Pharmacologic approaches to radiation protection. J Clin Oncol 25, 4084-4089. Brizel, D.M., Wasserman, T.H., Henke, M., Strnad, V., Rudat, V., Monnier, A., Eschwege, F., Zhang, J., Russell, L., Oster, W., et al. (2000). Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 18, 3339-3345. Burdelya, L.G., Gleiberman, A.S., Toshkov, I., Aygun-Sunar, S., Bapardekar, M., Manderscheid-Kern, P., Bellnier, D., Krivokrysenko, V.I., Feinstein, E., and Gudkov, A.V. (2012). Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys 83, 228-234. Caluwaerts, S., Vandenbroucke, K., Steidler, L., Neirynck, S., Vanhoenacker, P., Corveleyn, S., Watkins, B., Sonis, S., Coulie, B., and Rottiers, P. (2010). AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol 46, 564-570. Chen, P., Lingen, M., Sonis, S.T., Walsh-Reitz, M.M., and Toback, F.G. (2011a). Role of AMP-18 in oral mucositis. Oral Oncol 47, 831-839. Chen, Y.F., Chiu, W.T., Chen, Y.T., Lin, P.Y., Huang, H.J., Chou, C.Y., Chang, H.C., Tang, M.J., and Shen, M.R. (2011b). Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 108, 15225-15230. Cotrim, A.P., Yoshikawa, M., Sunshine, A.N., Zheng, C., Sowers, A.L., Thetford, A.D., Cook, J.A., Mitchell, J.B., and Baum, B.J. (2012). Pharmacological protection from radiation +/- cisplatin-induced oral mucositis. Int J Radiat Oncol Biol Phys 83, 1284-1290. El Boustany, C., Katsogiannou, M., Delcourt, P., Dewailly, E., Prevarskaya, N., Borowiec, A.S., and Capiod, T. (2010). Differential roles of STIM1, STIM2 and Orai1 in the control of cell proliferation and SOCE amplitude in HEK293 cells. Cell Calcium 47, 350-359. Faouzi, M., Hague, F., Potier, M., Ahidouch, A., Sevestre, H., and Ouadid-Ahidouch, H. (2011). Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J Cell Physiol 226, 542-551. Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S.H., Tanasa, B., Hogan, P.G., Lewis, R.S., Daly, M., and Rao, A. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179-185. Grdina, D.J., Murley, J.S., Kataoka, Y., Baker, K.L., Kunnavakkam, R., Coleman, M.C., and Spitz, D.R. (2009). Amifostine induces antioxidant enzymatic activities in normal tissues and a transplantable tumor that can affect radiation response. Int J Radiat Oncol Biol Phys 73, 886-896. Henke, M., Alfonsi, M., Foa, P., Giralt, J., Bardet, E., Cerezo, L., Salzwimmer, M., Lizambri, R., Emmerson, L., Chen, M.G., et al. (2011). Palifermin decreases severe oral mucositis of patients undergoing postoperative radiochemotherapy for head and neck cancer: a randomized, placebo-controlled trial. J Clin Oncol 29, 2815-2820. Hudes, G.R., Carducci, M.A., Choueiri, T.K., Esper, P., Jonasch, E., Kumar, R., Margolin, K.A., Michaelson, M.D., Motzer, R.J., Pili, R., et al. (2011). NCCN Task Force report: optimizing treatment of advanced renal cell carcinoma with molecular targeted therapy. J Natl Compr Canc Netw 9 Suppl 1, S1-29. Jaal, J., Richter, C., and Dorr, W. (2010). Effect of recombinant human keratinocyte growth factor (Δ23rHuKGF, Palifermin) on inflammatory and immune changes in mouse tongue during fractionated irradiation. Int J Radiat Biol 86, 860-866. Kawashima, R., Kawamura, Y.I., Kato, R., Mizutani, N., Toyama-Sorimachi, N., and Dohi, T. (2006). IL-13 receptor alpha2 promotes epithelial cell regeneration from radiation-induced small intestinal injury in mice. Gastroenterology 131, 130-141. Keefe, D.M., Sonis, S.T., and Bowen, J.M. (2008). Emerging drugs for chemotherapy-induced mucositis. Expert Opin Emerg Drugs 13, 511-522. Kreimer, A.R., Clifford, G.M., Boyle, P., and Franceschi, S. (2005). Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 14, 467-475. Le, Q.T., Kim, H.E., Schneider, C.J., Murakozy, G., Skladowski, K., Reinisch, S., Chen, Y., Hickey, M., Mo, M., Chen, M.G., et al. (2011). Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J Clin Oncol 29, 2808-2814. Lewis, R.S. (2007). The molecular choreography of a store-operated calcium channel. Nature 446, 284-287. Li, G., Zhang, Z., Wang, R., Ma, W., Yang, Y., Wei, J., and Wei, Y. (2013). Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest. J Exp Clin Cancer Res 32, 20. Li, M., Chen, C., Zhou, Z., Xu, S., and Yu, Z. (2012). A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells. Cell Calcium 51, 486-496. Liou, J., Fivaz, M., Inoue, T., and Meyer, T. (2007). Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104, 9301-9306. Liu, H., Hughes, J.D., Rollins, S., Chen, B., and Perkins, E. (2011). Calcium entry via ORAI1 regulates glioblastoma cell proliferation and apoptosis. Exp Mol Pathol 91, 753-760. Motiani, R.K., Hyzinski-Garcia, M.C., Zhang, X., Henkel, M.M., Abdullaev, I.F., Kuo, Y.H., Matrougui, K., Mongin, A.A., and Trebak, M. (2013). STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflugers Arch 465, 1249-1260. Muik, M., Frischauf, I., Derler, I., Fahrner, M., Bergsmann, J., Eder, P., Schindl, R., Hesch, C., Polzinger, B., Fritsch, R., et al. (2008). Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283, 8014-8022. Murphy, C.K., Fey, E.G., Watkins, B.A., Wong, V., Rothstein, D., and Sonis, S.T. (2008). Efficacy of superoxide dismutase mimetic M40403 in attenuating radiation-induced oral mucositis in hamsters. Clin Cancer Res 14, 4292-4297. Murray, L.A., Kramer, M.S., Hesson, D.P., Watkins, B.A., Fey, E.G., Argentieri, R.L., Shaheen, F., Knight, D.A., and Sonis, S.T. (2010). Serum amyloid P ameliorates radiation-induced oral mucositis and fibrosis. Fibrogenesis Tissue Repair 3, 11. Nonzee, N.J., Dandade, N.A., Patel, U., Markossian, T., Agulnik, M., Argiris, A., Patel, J.D., Kern, R.C., Munshi, H.G., Calhoun, E.A., et al. (2008). Evaluating the supportive care costs of severe radiochemotherapy-induced mucositis and pharyngitis : results from a Northwestern University Costs of Cancer Program pilot study with head and neck and nonsmall cell lung cancer patients who received care at a county hospital, a Veterans Administration hospital, or a comprehensive cancer care center. Cancer 113, 1446-1452. Ong, Z.Y., Gibson, R.J., Bowen, J.M., Stringer, A.M., Darby, J.M., Logan, R.M., Yeoh, A.S., and Keefe, D.M. (2010). Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis. Radiat Oncol 5, 22. Rao, J.N., Rathor, N., Zou, T., Liu, L., Xiao, L., Yu, T.X., Cui, Y.H., and Wang, J.Y. (2010). STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca2+ signaling after wounding. Am J Physiol Cell Physiol 299, C579-588. Rodriguez-Caballero, A., Torres-Lagares, D., Robles-Garcia, M., Pachon-Ibanez, J., Gonzalez-Padilla, D., and Gutierrez-Perez, J.L. (2012). Cancer treatment-induced oral mucositis: a critical review. Int J Oral Maxillofac Surg 41, 225-238. Rodriguez-Moyano, M., Diaz, I., Dionisio, N., Zhang, X., Avila-Medina, J., Calderon-Sanchez, E., Trebak, M., Rosado, J.A., Ordonez, A., and Smani, T. (2013). Urotensin-II promotes vascular smooth muscle cell proliferation through store-operated calcium entry and EGFR transactivation. Cardiovasc Res 100, 297-306. Ryu, S.H., Kang, K.M., Moon, S.Y., Chai, G.Y., Hong, J.P., Cho, K.O., Kang, M.I., Choi, E.K., and Lee, S.W. (2010). Therapeutic effects of recombinant human epidermal growth factor (rhEGF) in a murine model of concurrent chemo- and radiotherapy-induced oral mucositis. J Radiat Res 51, 595-601. Saha, S., Bhanja, P., Liu, L., Alfieri, A.A., Yu, D., Kandimalla, E.R., Agrawal, S., and Guha, C. (2012). TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome. PLoS One 7, e29357. Somasundaram, A., Shum, A.K., McBride, H.J., Kessler, J.A., Feske, S., Miller, R.J., and Prakriya, M. (2014). Store-operated CRAC channels regulate gene expression and proliferation in neural progenitor cells. J Neurosci 34, 9107-9123. Sonis, S.T. (2004). The pathobiology of mucositis. Nat Rev Cancer 4, 277-284. Sonis, S.T. (2007). Pathobiology of oral mucositis: novel insights and opportunities. J Support Oncol 5, 3-11. Sonis, S.T. (2009). Mucositis: The impact, biology and therapeutic opportunities of oral mucositis. Oral Oncol 45, 1015-1020. Sonis, S.T. (2011). Oral mucositis. Anticancer Drugs 22, 607-612. Sonis, S.T., Elting, L.S., Keefe, D., Peterson, D.E., Schubert, M., Hauer-Jensen, M., Bekele, B.N., Raber-Durlacher, J., Donnelly, J.P., and Rubenstein, E.B. (2004). Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100, 1995-2025. Timmons, J.A., Rao, J.N., Turner, D.J., Zou, T., Liu, L., Xiao, L., Wang, P.Y., and Wang, J.Y. (2012). Induced expression of STIM1 sensitizes intestinal epithelial cells to apoptosis by modulating store-operated Ca2+ influx. J Gastrointest Surg 16, 1397-1405. Tran, K.T., Griffith, L., and Wells, A. (2004). Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen 12, 262-268. Tsai, F.C., Seki, A., Yang, H.W., Hayer, A., Carrasco, S., Malmersjo, S., and Meyer, T. (2014). A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol 16, 133-144. Watkins, B., Pouliot, K., Fey, E., Tuthill, C., and Sonis, S. (2010). Attenuation of radiation- and chemoradiation-induced mucositis using gamma-D-glutamyl-L-tryptophan (SCV-07). Oral Dis 16, 655-660. Wu, X., Chen, P., Sonis, S.T., Lingen, M.W., Berger, A., and Toback, F.G. (2012). A novel Peptide to treat oral mucositis blocks endothelial and epithelial cell apoptosis. Int J Radiat Oncol Biol Phys 83, e409-415. Yang, N., Tang, Y., Wang, F., Zhang, H., Xu, D., Shen, Y., Sun, S., and Yang, G. (2013). Blockade of store-operated Ca(2+) entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett 330, 163-169. Yang, S., Zhang, J.J., and Huang, X.Y. (2009). Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15, 124-134. Yeoh, A.S., Gibson, R.J., Yeoh, E.E., Bowen, J.M., Stringer, A.M., Giam, K.A., and Keefe, D.M. (2007). A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, p53, nuclear factor-kappaB, COX-1, and COX-2. Mol Cancer Ther 6, 2319-2327. Yeromin, A.V., Zhang, S.L., Jiang, W., Yu, Y., Safrina, O., and Cahalan, M.D. (2006). Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226-229. Yoshida, J., Iwabuchi, K., Matsui, T., Ishibashi, T., Masuoka, T., and Nishio, M. (2012). Knockdown of stromal interaction molecule 1 (STIM1) suppresses store-operated calcium entry, cell proliferation and tumorigenicity in human epidermoid carcinoma A431 cells. Biochem Pharmacol 84, 1592-1603. Yuan, J.P., Zeng, W., Huang, G.N., Worley, P.F., and Muallem, S. (2007). STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9, 636-645. Zhao, J., Kim, K.A., De Vera, J., Palencia, S., Wagle, M., and Abo, A. (2009). R-Spondin1 protects mice from chemotherapy or radiation-induced oral mucositis through the canonical Wnt/beta-catenin pathway. Proc Natl Acad Sci U S A 106, 2331-2336. Zheng, C., Cotrim, A.P., Sunshine, A.N., Sugito, T., Liu, L., Sowers, A., Mitchell, J.B., and Baum, B.J. (2009). Prevention of radiation-induced oral mucositis after adenoviral vector-mediated transfer of the keratinocyte growth factor cDNA to mouse submandibular glands. Clin Cancer Res 15, 4641-4648. Zhuang, R., Rao, J.N., Zou, T., Liu, L., Xiao, L., Cao, S., Hansraj, N.Z., Gorospe, M., and Wang, J.Y. (2013). miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res 41, 7905-7919. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52264 | - |
dc.description.abstract | 口腔黏膜炎(oral mucositis)是頭頸癌病患接受放射線治療後產生的主要副作用,其發生率高達八至九成,造成病患口腔黏膜發炎、紅腫和潰瘍等現象,此病症造成病患吞嚥和進食困難,嚴重甚至造成味覺喪失或唾液分泌異常,影響病患生活品質,造成後續癌症療程進行上的困難,及增加傷口感染的可能性,然而目前尚未有有效的治療或預防方式。 以往的研究中得知,口腔黏膜炎為一種發炎反應,有許多reactive oxygen species和發炎前驅細胞激素IL-1β、TNF-α參與其中,放射線使上皮組織損傷而造成潰瘍,待上皮細胞增生和移動,能使傷口癒合。而STIM1為細胞內質網上之鈣離子感受器,當STIM1感受到內質網內的鈣離子濃度下降,STIM1聚集並移動至和接近細胞膜的位置,和ORAI1進行蛋白質-蛋白質交互作用形成綜合體,激活鈣離子經由此鈣離子通道從細胞外進入內質網中。 以往研究發現,STIM1能夠促使表皮生長因子誘導之上皮細胞的細胞增生和細胞遷移能力,並且對於腸子上皮細胞之受傷後復原能力有重要的影響,並於許多癌症轉移現象中,STIM1的表現量顯著上升。我們預期STIM1會影響上皮細胞的細胞增生和細胞遷移的能力進而影響傷口癒合。 我們以口腔黏膜炎小鼠模型之舌頭組織進行實驗,利用B6小鼠舌頭經照射25 Gy放射線後誘發口腔黏膜炎,並於小鼠舌頭潰瘍部位水敷或利用舌下注射方式給予BTP2,觀察老鼠體重、舌頭外觀及舌頭發炎區塊計算值的變化。 首先我們使用HaCaT細胞株進行細胞實驗,給予SOC抑制劑後,其會影響細胞遷移和增生能力。而進一步使用口腔黏膜炎小鼠模型研究,小鼠舌頭在經過放射線照射後,STIM1於不同時間點其表現顯著改變。並進一步以SOC抑制劑的方式給予照射放射線後的小鼠舌頭,發現其舌頭破損的面積隨著給予濃度提高而產生延遲現象。 我們猜測,STIM1在放射引起之口腔黏膜炎中,對於其時程或許扮演重要的腳色。希望這個發現,能夠幫助未來病人在口腔黏膜炎的治療上。 | zh_TW |
dc.description.abstract | Oral mucositis (OM) is the most common side-effect of radiotherapy in head-and-neck cancer patients. It leads to the oral mucosa inflammation, swelling and ulceration. The patient with OM might have eating difficulty, dysgeusia or silvery gland dysfunction. Due to open sores in the mucosa, it increases the risk of infection and has an influence on cancer therapy. The mechanism involved in the regeneration of epithelial cells to achieve wound healing was not clear. OM is an inflammatory process including reactive oxygen species and proinflammatory cytokine (IL-1β and TNF-α) is detected in mucositis tissue. The epithelium damage and tissue ulceration develop after irradiation. This wound could recover by the epithelial cell proliferation and migration. STIM1 functions as a calcium sensor in the endoplasmic reticulum. Upon activation of the IP3 receptor, the calcium concentration in the ER decreases, which is sensed by STIM1. STIM1 activates calcium ion channels in the plasma membrane, via intracellular STIM1 movement, clustering under plasma membrane and protein-protein interaction with ORAI isoforms. It has been reported that STIM1 can effect cell proliferation and migration. It is important for intestinal epithelial reconstitution. We hypothesized that STIM1 would play a role to epithelial cell proliferation and migration in OM. We successfully established an oral mucositis mouse model of tongue by 25 Gy radiation dose in B6 mice. The mice tongue was treated BTP2 by filter paper masking or sublingual injection. The mice weight and the appearance or inflammatory area measurement of the mice tongue changes can be observed. The cell migration and cell proliferation of HaCaT cell line were influenced by BTP2. STIM1 was dramatically changed in tongue too oral mucositis mice model by western blotting. Furthermore, the irradiated-tongue was treated by BTP2 caused that the delay-type phenomenon of the erosion area. We suggested that the SOC channel might play a important role in the period of oral mucositis. Hopefully in the near future, the candidate protein of this study can be used to treat patients who suffer from oral mucositis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:10:34Z (GMT). No. of bitstreams: 1 ntu-104-R02449013-1.pdf: 20938885 bytes, checksum: b51d71a8f88242f779484e814bbfc415 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 2 中文摘要 5 Abstract 7 Chapter 1. Introduction 9 1.1 Oral cancer 9 1.2 Oral mucositis 10 1.2.1 The pathobiology of oral mucositis 11 1.2.2 The prevention and treatment of oral mucositis 14 1.2.3 The animal model of oral mucositis 16 1.3 STIM1 and its function 18 1.4 Oral mucositis and STIM1 19 Chapter 2. Purposes and Aims 21 Chapter 3. Material and method 22 3.1 Cell 22 3.1.1 Cell culture 22 3.1.2 Cell passage 22 3.1.3 Migration assay 22 3.1.4 Cell viability test/MTT assay 23 3.2 Animal 23 3.2.1 Animal model establish 23 3.2.2 The erosion area measuring 24 3.2.3Animal tissue 24 3.2.4 IHC staining 24 3.2.5 H E staining 26 3.2.6 Western blotting 26 3.3 Statistical analysis 27 Chapter 4. Results 28 4.1. The BTP2 can affect the HaCaT cell viability and migration. 28 4.2. The different expression of the STIM1 in the oral mucositis process. 29 4.3. 25 gray of irradiation can induce the oral mucositis. 29 4.4. The BTP2 displayed the delayed feature of the oral mucositis caused by a single radiation dosage of 25 gray. 30 4.5. The BTP2 can delayed the feature in oral mucositis caused by a single radiation dosage of 25 gray. 31 4.6. The high concentration of the BTP2 led to the animal toxicity in the oral mucositis model caused by a single radiation dosage of 25 gray. 33 4.7. The high concentration of the BTP2 reduced the erosion of the oral mucositis model caused by a single radiation dosage of 25 gray. 34 Chapter 5. Discussion 36 Chapter 6. References 41 Chapter 7. Figures 51 | |
dc.language.iso | en | |
dc.title | 內質網鈣離子儲存感受器基質交互分子1在放射線誘導之口腔黏膜炎動物模型中可能扮演的角色 | zh_TW |
dc.title | The possible role of Stromal interaction molecule 1 (STIM1)in the animal model of irradiation-induced oral mucositis. | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蔡丰喬(Feng-Chiao Tsai),成佳憲(Chia-Hsien Cheng) | |
dc.subject.keyword | 內質網鈣離子儲存感受器基質交互分子1,口腔黏膜炎, | zh_TW |
dc.subject.keyword | Stromal interaction molecule 1,STIM1,oral mucositis, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 20.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。