請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52263完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉 | |
| dc.contributor.author | Hsin-Yu Wu | en |
| dc.contributor.author | 吳心宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:10:32Z | - |
| dc.date.available | 2016-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | [1] Jri Lee, Yenlin Huang, Y. Chen, Hsinchia Lu, and Chiajung Chang, 'A low-power fully integrated 60GHz transceiver system with OOK modulation and on-board antenna assembly,' in International Solid-State Circuits Conference, pp. 316-317, Feb. 2009.
[2] Jri Lee, Yi-An Li, Meng-Hsiung Hung, and Shih-Jou Huang, 'A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,' IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2746 - 2756, Dec. 2010. [3] J.C. Lin, 'Noninvasive microwave measurement of respiration,' Proceedings of the IEEE, vol. 63, no. 10, pp. 1530, Oct. 1975. [4] J.C. Lin, 'Microwave sensing of physiological movement and volume change: A review,' Bioelectromagnetics, vol. 13, no. 6, pp. 557-565, Jan 1992. [5] Hsuan-Wei Yeh, “FMCW and monopulse radar for heart beat and respiration monitoring,” Graduate Institute of Electronics Engineering Master Thesis, National Taiwan University, July 2013. [6] Changzhi Li and Jenshan Lin, 'Recent advances in doppler radar sensors for pervasive healthcare monitoring,' in 2010 Asia-Pacific Microwave Conference Proceedings, pp. 283 - 290, Dec. 7-10, 2010. [7] B.S. Jensen, S.T. Jonasson, T.K. Johansen, and T. Jensen, 'Vital signs detection radar using low intermediate-frequency architecture and single-sideband transmission,' in 2012 9th European Radar Conference (EuRAD), pp. 67-70, Oct. 31, 2012. [8] D. Girbau, A. Lazaro, A. Ramos, and R. Villarino, “Remote sensing of vital signs using a Doppler radar and diversity to overcome null detection,” IEEE Sensors J., vol. 12, no. 3, pp. 512-518, Mar. 2012. [9] Behzad Razavi, “RF Microelectronics,” second edition, Prentice Hall Communications Engineering and Emerging Technologies Series from Ted Rappaport, Oct. 2011. [10] Agilent EEsof EDA, “Presentation on RFIC MOS Gilbert cell mixer design,” April 2001. http://literature.cdn.keysight.com/litweb/pdf/5989-9103EN.pdf [11] Mohammad Beigizadeh and Abdolreza Nabavi, “A K-band common-source Gilbert-cell mixer with high gain and high linearity for UWB applications,” in 2013 21st Iranian Conference on Electrical Engineering (ICEE), pp. 1-5, May 2013. [12] Hedieh Elyasi, Abdolreza Nabavi, “Design of a Ku-band Gilbert mixer with gain, noise figure and linearity enhancement,” in 2011 19th Iranian Conference on Electrical Engineering (ICEE), pp. 1-6, May 2011. [13] Yu-Hsin Chang, Chia-Yang Huang, and Yen-Chung Chiang, “A 24GHz down-conversion mixer with low noise and high gain,” in 2012 European Microwave Integrated Circuits Conference (EuMIC), pp. 285-288, Oct. 2012. [14] H. Darabi and J. Chiu, “A noise cancellation technique in active RF-CMOS mixers,” in International Solid-State Circuits Conference, pp. 544-616, Feb. 2005. [15] Dukju Ahn, Dong-Wook Kim and Songcheol Hong, “A K-band high-gain down-conversion mixer in 0.18 μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 4, pp. 227-229, April 2009. [16] Yalin Jin and Cam Nguyen, “Ultra-Compact High-Linearity High-Power Fully Integrated DC–20-GHz 0.18-μm CMOS T/R Switch,” IEEE Trans. on Microwave Theory and Techniques, vol. 55, no. 1, pp. 30-36, Jan. 2007. [17] Jeng-Han Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1350-1360, May 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52263 | - |
| dc.description.abstract | 本論文主要研究偵測生物訊號之連續波雷達中接收路徑上之降頻混頻器,運用電磁波偵測生活周遭的具體訊號一直是人類努力的目標之一,其中非接觸式、用以偵測生物訊號的督普勒雷達(Doppler radar)近年來開始引起各方學者們的興趣。
本論文前半段由偵測生物訊號之連續波雷達開始介紹,並簡介混頻器於雷達中的用途,隨後分析各種不同混頻器之功能與架構。其中吉伯特混頻器為主動混頻器中最為熱門的架構,亦有許多文獻提供了增進吉伯特混頻器效能的方法。 後半段提出一種新的架構為交叉耦合對之主動負載吉伯特混頻器,能夠同時提高射頻端電晶體的互導以及輸出端的負載,亦不會提高通過負載的壓降,並使得轉換增益有效的提升。再透過電阻回授反向緩衝放大器架構之阻抗轉換放大器連接於混頻器輸出端,使混頻器對下一級電路的輸入阻抗較不敏感,解決原電路振盪的可能性。 本論文是以TSMC 0.18μm CMOS製程,設計主動負載架構之吉伯特混頻器,中心頻率在24GHz,使用ADS及Sonnet軟體模擬驗證,晶片佈局尺寸為 ,並於國家晶片中心進行高頻量測驗證,證實此主動負載架構能夠實現高電壓轉換增益之降頻混頻器。 | zh_TW |
| dc.description.abstract | In this thesis, a down-conversion mixer for heart beat and respiration monitoring radar is designed by using the Gilbert cell structure with active loads. Monitoring the signals in our life by electromagnetic wave is one of the goals which people have worked hard to achieve. For non-contact heart beat and respiration monitoring, Doppler radar is one of the most popular approaches in this domain in recent years.
This thesis starts from introducing the heart beat and respiration monitoring radar, and then analyses the role of mixers in these radars and different structures of mixers. The Gilbert cell is the most popular structure in active mixers and there are many papers proposed different methods to improve the performance of Gilbert cell mixer. This thesis proposes a new structure of Gilbert cell mixer which contains cross-coupled pair active loads. This new structure can enhance the transconductance of the RF MOSFET and the impedance of outputs without increasing the voltage drop at the output loads. And the conversion gain can also be effectively improved. To avoid the possibility of circuit oscillation, the resistor feedback inverter topology transimpedance amplifiers are added to the structure. In this thesis, a Gilbert cell mixer with active loads is developed in TSMC 0.18μm CMOS technology at 24GHz and simulated by the ADS and Sonnet. The chips are measured in National Chip Implementation Center with high frequency measurement instrument to prove that this new structure can effectively improve the properties of Gilbert cell mixer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:10:32Z (GMT). No. of bitstreams: 1 ntu-104-R02943035-1.pdf: 7699020 bytes, checksum: d038bea6faa2a6cbf81a8a7538ab70d6 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 簡介 1 1.1 偵測生物訊號之連續波雷達簡介與頻段選取 1 1.2 雷達零點的推導 4 1.3 雷達零點的解決方法 6 1.3.1 應用單邊帶混頻器之雷達 6 1.3.2 應用相移器之雷達 9 1.4 混頻器的功能與架構 10 1.4.1 被動混頻器 10 1.4.2 主動混頻器 11 Chapter 2 吉伯特混頻器架構 15 2.1 架構 15 2.2 運作原理 15 2.3 吉伯特混頻器之優劣分析 18 2.3.1 轉換增益 18 2.3.2 雙平衡式混頻器(double balanced mixer) 19 2.3.3 三階互調截取點IIP3 19 2.4 提升吉伯特混頻器效能之方法與文獻回顧 22 2.4.1 電路以及PDC (post-distortion cancellation)技術 22 2.4.2 電流注入技術 24 2.4.3 增益提升電路及其負阻抗功效 26 2.4.4 文獻特性比較與說明 28 Chapter 3 使用主動負載之吉伯特混頻器 29 3.1 簡介與架構 29 3.2 運作原理數學推導及等效模型的轉換 30 3.3 使用主動負載之吉伯特降頻混頻器電路模擬 33 3.3.1 電晶體尺寸選取 33 3.3.2 電磁模擬 36 3.3.3 轉換增益與線性度 38 3.3.4 反射係數 39 3.3.5 1-dB頻寬 40 3.3.6 本地振盪端電晶體基極偏壓設計 40 3.3.7 電路特性的比較與分析 42 3.3.8 電路佈局圖與晶片照片 43 3.4 以阻抗轉換放大器改善主動負載之缺點 44 3.4.1 架構 44 3.4.2 阻抗轉換放大器電路模擬 45 3.5 以阻抗轉換放大器改善之主動負載電路模擬 47 3.5.1 電晶體尺寸與並接低阻值電阻之選取 48 3.5.2 轉換增益與線性度 50 3.5.3 反射係數 53 3.5.4 1-dB頻寬 54 3.5.5 電路特性的比較與分析 55 3.5.6 電路佈局圖與晶片照片 55 Chapter 4 量測 57 4.1 環氧樹酯玻璃纖維 57 4.2 晶片佈局錯誤經驗與解決過程 58 4.3 量測數據 59 4.3.1 反射係數 59 4.3.2 電磁模擬模型修正 62 4.3.3 轉換增益 63 4.3.4 量測照片 67 Chapter 5 結論 68 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高電壓轉換增益 | zh_TW |
| dc.subject | 吉伯特混頻器 | zh_TW |
| dc.subject | 交叉耦合對 | zh_TW |
| dc.subject | 主動負載 | zh_TW |
| dc.subject | 電阻回授反向緩衝放大器 | zh_TW |
| dc.subject | 阻抗轉換放大器 | zh_TW |
| dc.subject | cross-couple pair | en |
| dc.subject | high voltage conversion gain | en |
| dc.subject | resistor feedback inverter topology transimpedance amplifiers | en |
| dc.subject | active load | en |
| dc.subject | Gilbert cell mixer | en |
| dc.title | 使用主動負載之吉伯特混頻器 | zh_TW |
| dc.title | Gilbert Cell Mixer Using Active Loads | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡政翰,林坤佑 | |
| dc.subject.keyword | 吉伯特混頻器,交叉耦合對,主動負載,電阻回授反向緩衝放大器,阻抗轉換放大器,高電壓轉換增益, | zh_TW |
| dc.subject.keyword | Gilbert cell mixer,cross-couple pair,active load,resistor feedback inverter topology transimpedance amplifiers,high voltage conversion gain, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 7.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
