Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52261
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇柏青
dc.contributor.authorLin-Chi Wuen
dc.contributor.author伍麟奇zh_TW
dc.date.accessioned2021-06-15T16:10:30Z-
dc.date.available2020-08-21
dc.date.copyright2015-08-21
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationBibliography
[1] Hamid Saeedi-Sourck et al. “Complexity and performance comparison of filter bank multicarrier and OFDM in uplink of multicarrier multiple access networks”. In: Signal Processing, IEEE Transactions on 59.4 (2011), pp. 1907–1912.
[2] B. Farhang-Boroujeny. “OFDM Versus Filter Bank Multicarrier”. In: Signal Processing Magazine, IEEE 28.3 (May 2011), pp. 92–112. issn : 1053-5888. doi :
10.1109/MSP.2011.940267.
[3] G. Fettweis, M. Krondorf, and S. Bittner. “GFDM - Generalized Frequency Di-
vision Multiplexing”. In: Vehicular Technology Conference, 2009. VTC Spring
2009. IEEE 69th. Apr. 2009, pp. 1–4. doi : 10.1109/VETECS.2009.5073571.
[4] V. Vakilian et al. “Universal-filtered multi-carrier technique for wireless systems
beyond LTE”. In: Globecom Workshops (GC Wkshps), 2013 IEEE. Dec. 2013,
pp. 223–228. doi : 10.1109/GLOCOMW.2013.6824990.
[5] G. Wunder et al. “5GNOW: Intermediate frame structure and transceiver con-
cepts”. In: Globecom Workshops (GC Wkshps), 2014. Dec. 2014, pp. 565–570.
doi : 10.1109/GLOCOMW.2014.7063492.
[6] G. Wunder et al. “5GNOW: Challenging the LTE Design Paradigms of Orthog-
onality and Synchronicity”. In: Vehicular Technology Conference (VTC Spring),
2013 IEEE 77th. June 2013, pp. 1–5. doi : 10.1109/VTCSpring.2013.6691814.
[7] J.G. Andrews et al. “What Will 5G Be?” In: Selected Areas in Communications,
IEEE Journal on 32.6 (June 2014), pp. 1065–1082. issn : 0733-8716. doi : 10.
1109/JSAC.2014.2328098.
[8] Maximilian Matthe et al. “Multi-user time-reversal STC-GFDMA for future
wireless networks”. In: EURASIP Journal on Wireless Communications and
Networking 2015.1 (2015), pp. 1–8.
[9] F. Schaich and T. Wild. “Waveform contenders for 5G ; OFDM vs. FBMC
vs. UFMC”. In: Communications, Control and Signal Processing (ISCCSP),
2014 6th International Symposium on. May 2014, pp. 457–460. doi : 10.1109/
ISCCSP.2014.6877912.
[10] T. Wild, F. Schaich, and Yejian Chen. “5G air interface design based on Uni-
versal Filtered (UF-)OFDM”. In: Digital Signal Processing (DSP), 2014 19th
International Conference on. Aug. 2014, pp. 699–704. doi : 10.1109/ICDSP.
2014.6900754.
[11] G. Wunder et al. “5GNOW: non-orthogonal, asynchronous waveforms for future
mobile applications”. In: Communications Magazine, IEEE 52.2 (Feb. 2014),
pp. 97–105. issn : 0163-6804. doi : 10.1109/MCOM.2014.6736749.
[12] F. Schaich and T. Wild. “Relaxed synchronization support of universal filtered
multi-carrier including autonomous timing advance”. In: Wireless Communi-
cations Systems (ISWCS), 2014 11th International Symposium on. Aug. 2014,
pp. 203–208. doi : 10.1109/ISWCS.2014.6933347.
[13] Peiying Zhu. “New Waveform and Multiple Access Evaluations”. In: (Jan. 25,
2014, NGMN).
[14] Michele Morelli, CC Jay Kuo, and Man-On Pun. “Synchronization techniques
for orthogonal frequency division multiple access (OFDMA): A tutorial review”.
In: Proceedings of the IEEE 95.7 (2007), pp. 1394–1427.
[15] Jin Xinzhu. “Channel Estimation Techniques of SC-FDMA”. In: (2007).
[16] Yuan-Pei Lin, See-May Phoong, and PP Vaidyanathan. Filter bank transceivers
for OFDM and DMT systems. Cambridge University Press, 2010.
[17] Geoff Gordon and Ryan Tibshirani. “Karush-kuhn-tucker conditions”. In: Op-
timization 10.725/36 (2012), p. 725.
[18] 3GPP TS 36.101. “User Equipment (UE) Radio Transmission and Reception.”
In: 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). (2010).
[19] 3GPP TS 36.104. “Base Station (BS) radio transmission and reception.” In:
3rd Generation Partnership Project; Technical Specification Group Radio Access
Network; Evolved Universal Terrestrial Radio Access (E-UTRA) (2010).
[20] L.J. Karam and J.H. McClellan. “Complex Chebyshev approximation for FIR
filter design”. In: Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on 42.3 (Mar. 1995), pp. 207–216. issn : 1057-7130. doi :
10.1109/82.372870.
[21] Xiaojie Wang, Thorsten Wild, and Frank Schaich. “Filter Optimization for
Carrier-Frequency- and Timing-Offset in Universal Filtered Multi-Carrier Sys-
tems”. In: Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st.
May 2015, pp. 1–6. doi : 10.1109/VTCSpring.2015.7145842.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52261-
dc.description.abstract在這篇論文中,我們提出在預編碼通用濾波多載波系統下引示信號能量分配方法來降低最小均方根通道估測誤差。通用濾波多載波系統是一個多載波傳送系統來克服正交分頻多工系統中載波間干擾的問題。通用濾波多載波系統對一整個資源區塊濾波來降低對旁邊資源區塊的干擾。在有載波頻率偏移環境下,通用濾波多載波系統跟正交分頻多工系統相比有較好的表現,然而通用濾波多載波系統會增加通道長度由於對一整個資源區塊濾波。基於以上性質,我們提出引示信號能量分配方法來降低通道估測誤差。而模擬結果也顯示我們提出的引示信號能量分配方法的確降低了通道估測誤差。zh_TW
dc.description.abstractIn this thesis, we study the minimum mean square error(MMSE) channel estimation algorithm and design the pilot signal power allocation to reduce
channel estimation error in precoded universal-filtered multi-carrier (UFMC) system. UFMC system is a multi-carrier transmission scheme to overcome
the problem of inter-carrier interference (ICI) in orthogonal frequency division multiplexing (OFDM) systems. In UFMC scheme, a filtering
operation is applied to a group of consecutive subcarriers in order to reduce out-of-band
sidelobe levels and subsequently minimize the potential ICI between adjacent users in case of asynchronous transmissions.
Despite the fact that UFMC have better performance than OFDM in carrier frequency offset environment, UFMC have lengthen channel taps
because of the filter.
Based on this properity, we propose a method about pilot signal power allocation to reduce channel estimation error in precoded UFMC system.
And simulation result shows that the pilot signal power allocation we proposed really reduce the channel estimation error.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:10:30Z (GMT). No. of bitstreams: 1
ntu-104-R02942113-1.pdf: 2617800 bytes, checksum: 26364c9bb3f82dc066e1b5de3d452636 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
List of figures iii
List of tables v
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 System model 5
2.1 Uplink Precoded UFMC System Model . . . . . . . . . . . . . . . . . 6
2.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 MMSE channel estimator . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Proposed Pilot Signal Design in Uplink Precoded UFMC System 17
3.1 Pilot Signal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Some Properties on Designed Pilot Signal . . . . . . . . . . . . . . . . 20
4 Simulation Results 21
5 Conclusion 39
dc.language.isoen
dc.subject通用濾波多載波系統zh_TW
dc.subject多夫-柴比雪夫窗zh_TW
dc.subject帕克斯-麥克倫演算法zh_TW
dc.subject最小均方根通道估測方法zh_TW
dc.subject正交分頻多工系統zh_TW
dc.subjectOFDMen
dc.subjectParks–McClellan Filter Design Algorithmen
dc.subjectDolph-Chebyshev Windowen
dc.subjectUniversal-Filtered Multi-Carrieren
dc.subjectMinimum Mean Square Error Channel Estimation Algorithmen
dc.title上行預編碼通用濾波多載波系統之領航訊號能量分配設計zh_TW
dc.titlePilot Signal Power Allocation Design for Uplink Precoded Universal-Filtered Multi-Carrier Systemen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馮世邁,顏嘉邦
dc.subject.keyword通用濾波多載波系統,正交分頻多工系統,最小均方根通道估測方法,帕克斯-麥克倫演算法,多夫-柴比雪夫窗,zh_TW
dc.subject.keywordUniversal-Filtered Multi-Carrier,OFDM,Minimum Mean Square Error Channel Estimation Algorithm,Parks–McClellan Filter Design Algorithm,Dolph-Chebyshev Window,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved