請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52261完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇柏青 | |
| dc.contributor.author | Lin-Chi Wu | en |
| dc.contributor.author | 伍麟奇 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:10:30Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2015-08-21 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | Bibliography
[1] Hamid Saeedi-Sourck et al. “Complexity and performance comparison of filter bank multicarrier and OFDM in uplink of multicarrier multiple access networks”. In: Signal Processing, IEEE Transactions on 59.4 (2011), pp. 1907–1912. [2] B. Farhang-Boroujeny. “OFDM Versus Filter Bank Multicarrier”. In: Signal Processing Magazine, IEEE 28.3 (May 2011), pp. 92–112. issn : 1053-5888. doi : 10.1109/MSP.2011.940267. [3] G. Fettweis, M. Krondorf, and S. Bittner. “GFDM - Generalized Frequency Di- vision Multiplexing”. In: Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th. Apr. 2009, pp. 1–4. doi : 10.1109/VETECS.2009.5073571. [4] V. Vakilian et al. “Universal-filtered multi-carrier technique for wireless systems beyond LTE”. In: Globecom Workshops (GC Wkshps), 2013 IEEE. Dec. 2013, pp. 223–228. doi : 10.1109/GLOCOMW.2013.6824990. [5] G. Wunder et al. “5GNOW: Intermediate frame structure and transceiver con- cepts”. In: Globecom Workshops (GC Wkshps), 2014. Dec. 2014, pp. 565–570. doi : 10.1109/GLOCOMW.2014.7063492. [6] G. Wunder et al. “5GNOW: Challenging the LTE Design Paradigms of Orthog- onality and Synchronicity”. In: Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th. June 2013, pp. 1–5. doi : 10.1109/VTCSpring.2013.6691814. [7] J.G. Andrews et al. “What Will 5G Be?” In: Selected Areas in Communications, IEEE Journal on 32.6 (June 2014), pp. 1065–1082. issn : 0733-8716. doi : 10. 1109/JSAC.2014.2328098. [8] Maximilian Matthe et al. “Multi-user time-reversal STC-GFDMA for future wireless networks”. In: EURASIP Journal on Wireless Communications and Networking 2015.1 (2015), pp. 1–8. [9] F. Schaich and T. Wild. “Waveform contenders for 5G ; OFDM vs. FBMC vs. UFMC”. In: Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on. May 2014, pp. 457–460. doi : 10.1109/ ISCCSP.2014.6877912. [10] T. Wild, F. Schaich, and Yejian Chen. “5G air interface design based on Uni- versal Filtered (UF-)OFDM”. In: Digital Signal Processing (DSP), 2014 19th International Conference on. Aug. 2014, pp. 699–704. doi : 10.1109/ICDSP. 2014.6900754. [11] G. Wunder et al. “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications”. In: Communications Magazine, IEEE 52.2 (Feb. 2014), pp. 97–105. issn : 0163-6804. doi : 10.1109/MCOM.2014.6736749. [12] F. Schaich and T. Wild. “Relaxed synchronization support of universal filtered multi-carrier including autonomous timing advance”. In: Wireless Communi- cations Systems (ISWCS), 2014 11th International Symposium on. Aug. 2014, pp. 203–208. doi : 10.1109/ISWCS.2014.6933347. [13] Peiying Zhu. “New Waveform and Multiple Access Evaluations”. In: (Jan. 25, 2014, NGMN). [14] Michele Morelli, CC Jay Kuo, and Man-On Pun. “Synchronization techniques for orthogonal frequency division multiple access (OFDMA): A tutorial review”. In: Proceedings of the IEEE 95.7 (2007), pp. 1394–1427. [15] Jin Xinzhu. “Channel Estimation Techniques of SC-FDMA”. In: (2007). [16] Yuan-Pei Lin, See-May Phoong, and PP Vaidyanathan. Filter bank transceivers for OFDM and DMT systems. Cambridge University Press, 2010. [17] Geoff Gordon and Ryan Tibshirani. “Karush-kuhn-tucker conditions”. In: Op- timization 10.725/36 (2012), p. 725. [18] 3GPP TS 36.101. “User Equipment (UE) Radio Transmission and Reception.” In: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). (2010). [19] 3GPP TS 36.104. “Base Station (BS) radio transmission and reception.” In: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) (2010). [20] L.J. Karam and J.H. McClellan. “Complex Chebyshev approximation for FIR filter design”. In: Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on 42.3 (Mar. 1995), pp. 207–216. issn : 1057-7130. doi : 10.1109/82.372870. [21] Xiaojie Wang, Thorsten Wild, and Frank Schaich. “Filter Optimization for Carrier-Frequency- and Timing-Offset in Universal Filtered Multi-Carrier Sys- tems”. In: Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st. May 2015, pp. 1–6. doi : 10.1109/VTCSpring.2015.7145842. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52261 | - |
| dc.description.abstract | 在這篇論文中,我們提出在預編碼通用濾波多載波系統下引示信號能量分配方法來降低最小均方根通道估測誤差。通用濾波多載波系統是一個多載波傳送系統來克服正交分頻多工系統中載波間干擾的問題。通用濾波多載波系統對一整個資源區塊濾波來降低對旁邊資源區塊的干擾。在有載波頻率偏移環境下,通用濾波多載波系統跟正交分頻多工系統相比有較好的表現,然而通用濾波多載波系統會增加通道長度由於對一整個資源區塊濾波。基於以上性質,我們提出引示信號能量分配方法來降低通道估測誤差。而模擬結果也顯示我們提出的引示信號能量分配方法的確降低了通道估測誤差。 | zh_TW |
| dc.description.abstract | In this thesis, we study the minimum mean square error(MMSE) channel estimation algorithm and design the pilot signal power allocation to reduce
channel estimation error in precoded universal-filtered multi-carrier (UFMC) system. UFMC system is a multi-carrier transmission scheme to overcome the problem of inter-carrier interference (ICI) in orthogonal frequency division multiplexing (OFDM) systems. In UFMC scheme, a filtering operation is applied to a group of consecutive subcarriers in order to reduce out-of-band sidelobe levels and subsequently minimize the potential ICI between adjacent users in case of asynchronous transmissions. Despite the fact that UFMC have better performance than OFDM in carrier frequency offset environment, UFMC have lengthen channel taps because of the filter. Based on this properity, we propose a method about pilot signal power allocation to reduce channel estimation error in precoded UFMC system. And simulation result shows that the pilot signal power allocation we proposed really reduce the channel estimation error. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:10:30Z (GMT). No. of bitstreams: 1 ntu-104-R02942113-1.pdf: 2617800 bytes, checksum: 26364c9bb3f82dc066e1b5de3d452636 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents
List of figures iii List of tables v 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 System model 5 2.1 Uplink Precoded UFMC System Model . . . . . . . . . . . . . . . . . 6 2.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 MMSE channel estimator . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Proposed Pilot Signal Design in Uplink Precoded UFMC System 17 3.1 Pilot Signal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Some Properties on Designed Pilot Signal . . . . . . . . . . . . . . . . 20 4 Simulation Results 21 5 Conclusion 39 | |
| dc.language.iso | en | |
| dc.subject | 通用濾波多載波系統 | zh_TW |
| dc.subject | 多夫-柴比雪夫窗 | zh_TW |
| dc.subject | 帕克斯-麥克倫演算法 | zh_TW |
| dc.subject | 最小均方根通道估測方法 | zh_TW |
| dc.subject | 正交分頻多工系統 | zh_TW |
| dc.subject | OFDM | en |
| dc.subject | Parks–McClellan Filter Design Algorithm | en |
| dc.subject | Dolph-Chebyshev Window | en |
| dc.subject | Universal-Filtered Multi-Carrier | en |
| dc.subject | Minimum Mean Square Error Channel Estimation Algorithm | en |
| dc.title | 上行預編碼通用濾波多載波系統之領航訊號能量分配設計 | zh_TW |
| dc.title | Pilot Signal Power Allocation Design for Uplink Precoded Universal-Filtered Multi-Carrier System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馮世邁,顏嘉邦 | |
| dc.subject.keyword | 通用濾波多載波系統,正交分頻多工系統,最小均方根通道估測方法,帕克斯-麥克倫演算法,多夫-柴比雪夫窗, | zh_TW |
| dc.subject.keyword | Universal-Filtered Multi-Carrier,OFDM,Minimum Mean Square Error Channel Estimation Algorithm,Parks–McClellan Filter Design Algorithm,Dolph-Chebyshev Window, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
