Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳燕惠(Yen-Hui Chen)
dc.contributor.authorMing-Hung Houen
dc.contributor.author侯明宏zh_TW
dc.date.accessioned2021-06-15T16:10:16Z-
dc.date.available2020-09-24
dc.date.copyright2015-09-24
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation[1]Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, 2010. CA: a cancer journal for clinicians 60, 277-300.
[2]Perou, C.M., Jeffrey, S.S., van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., Pergamenschikov, A., Williams, C.F., Zhu, S.X., Lee, J.C., Lashkari, D., Shalon, D., Brown, P.O., and Botstein, D. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proceedings of the National Academy of Sciences of the United States of America 96, 9212-9217.
[3]Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S.X., Lonning, P.E., Borresen-Dale, A.L., Brown, P.O., and Botstein, D. (2000). Molecular portraits of human breast tumours. Nature 406, 747-752.
[4]Perou, C.M., Jeffrey, S.S., van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., Pergamenschikov, A., Williams, C.F., Zhu, S.X., Lee, J.C., Lashkari, D., Shalon, D., Brown, P.O., and Botstein, D. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proceedings of the National Academy of Sciences of the United States of America 96, 9212-9217.
[5]Novaro, V., Roskelley, C.D., and Bissell, M.J. (2003). Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells. Journal of cell science 116, 2975-2986.
[6]Lee, A.V., Oesterreich, S., and Davidson, N.E. (2015). MCF-7 cells--changing the course of breast cancer research and care for 45 years. Journal of the National Cancer Institute 107.
[7]Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumor progression. Nature Reviews Cancer 2, 442-454.
[8] Thiery, J. P., Acloque, H., Huang, R. Y. and Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890.
[9]Klymkowsky, M,W. (2005). Beta-catenin and its regulatory network. Human Pathology 36, 225-227.
[10]Cao, H., Xu, E., Liu, H., Wan, L., and Lai, M. (2015). Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathology, research and practice 211, 557-569.
[11]Peinado, H., Olmeda, D. and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer 7, 415-428.
[12]Xu, J., Lamouille, S. and Derynck, R. (2009). TGF β induced epithelial to mesenchymal transition. Cell Research 19, 156-172.
[13]Lin, T., Ponn, A., Hu, X., Law, B. K., and Lu, J. (2010). Requirement of the histone demethylase LSD1 in Snai1 mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29, 4896-4904.
[14]De Craene, B. and Berx, G. (2013). Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer 13, 97-110.
[15]Yang, F., Sun, L., Li, Q., Han, X., Lei, L., Zhang, H., and Shang, Y. (2012). SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO Journal 31, 110-123.
[16]Lamouille, S., Xu, J., and Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology 15, 178-196.
[17]Puisieux, A., Brabletz, T., and Caramel, J. (2014). Oncogenic roles of EMT-inducing transcription factors. Nature cell biology 16, 488-494.
[18]Attisano, L., and Wrana, J.L. (2002). Signal transduction by the TGF-beta superfamily. Science 296, 1646-1647.
[19]Xu, J., Lamouille, S., and Derynck, R. (2009). TGF-β-induced epithelial to mesenchymal transition. Cell Research 19, 156-172.
[20]Philip, W., Nakano, Y., and Seger, C. (2011). Mechanisms and functions of Hedgehog signalling across the metazoa. Nature Reviews Genetics 12, 393-406.
[21] Briscoe, J., and Therond, P. P. (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nature Reviews Molecular Cell Biology 14, 416-429.
[22]Fendrich, V., Waldmann, J., Esni, F., Ramaswamy, A., Mullendore, M., Buchholz, M., Maitra, A., and Feldmann, G. (2007). Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocrine Related Cancer 14, 865-874.
[23]Feldmann, G., Dhara, S., Fendrich, V., Bedja, D., Beaty, R., Mullendore, M., Karikari, C., Alvarez, H., Iacobuzio-Donahue, C., Jimeno, A., Gabrielson, K.L., Matsui, W., and Maitra, A. (2007). Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Research 67, 2187-2196.
[24]Hori, K., Sen, A., and Artavanis-Tsakonas, S. (2013). Notch signaling at a glance. Journal of Cell Science 126, 2135-2140.
[25]Wang, Y., and Zhou, B.P. (2011). Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chinese Journal of Cancer 30, 603-611.
[26]Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441, 431-436.
[27]Han, S.P., Kim, J.H., Han, M.E., Sim, H.E., Kim, K.S., Yoon, S., Baek, S.Y., Kim, B.S., and Oh, S.O. (2011). Snai 1 is involved in the proliferation and migration of glioblastoma cells. Cellular and Molecular Neurobiology 31, 489-496.
[28]Xun, J., Hee-Young, J., Kveung, M.J., Kim, J.K., Jin, J., Kim, S.H., Kang, B.G., Beck, S., Lee, S.J., Kim, J.K., Park, A.K., Park, W.Y., Choi, Y.J., Nam, D.H., and Kim, H. (2011). Frizzled 4 regulatesstemness and invasiveness of migrating glioma cells established by serial intracranialtransplantation. Cancer Research 71, 3066-3075.
[29]Kao, S.H., Wang, W.L., Chen, C.Y., Chang, Y.L., Wu, Y.Y., Wang, Y.T., Wang, S.P., Nesvizhskii, A.I., Chen, Y.J., Hong, T.M., Yang, P.C. (2014). GSK3β controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene 33, 3172-3182.
[30]Cohen, M.E., Yin, M., Paznekas, W.A., Schertzer, M., Wood, S., and Jabs, E.W. (1998). Human SLUG gene organization, expression, and chromosome map location on 8q. Genomics 51, 468-471.
[31]Savagner, P., Karavanova, I., Perantoni, A., Thiery, J.P., and Yamada, K.M. (1998). Slug mRNA is expressed by specific mesodermal derivatives during rodent organogenesis. Developmental Dynamics 213, 182-187.
[32]Oram, K.F., Carver, E.A., and Gridley, T. (2003). Slug expression during organogenesis in mice. Anatomical Record part A-Discoveries in Molecular Cellular and Evolutionary Biology 271,189-191.
[33] Cobaleda, C., P eacute;rez-Caro, M., Vicente-Due ntilde;as, C., and S aacute;nchez-Garc iacute;a, I. (2007). Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annual Review of Genetics 41, 41-61.
[34] Tania, M., Khan, M.A., and Fu, J. (2014). Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 35, 7335-7342.
[35]Jiang, Y., Zhao, X.T., Xiao, Q., Liu, Q.B., Ding, K.S., Yu, F., Zhang, R., Zhu, T., and Ge, G.X. (2014). Snail and Slug mediate tamoxifen resistance in breast cancer cells through activation of EGFR-ERK independent of epithelial-mesenchymal transition. Journal of molecular cell biology 6, 352-354.
[36]Alves, C.C., Carneiro, F., Hoefler, H., and Becker, K.F. (2009). Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Frontiers in Bioscience 14, 3035-3050.
[37] Wu, Z.Q., Li, X.Y., Hu, C.Y., Ford, M., Kleer, C.G., and Weiss, S.J. (2012). Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proceedings of the National Academy of Sciences of the United States of America 109, 16654-16659.
[38] C ocirc;me, C., Magnino, F., Bibeau, F., De Santa Barbara, P., Becker, K.F., Theillet, C., and Savagner, P. (2006). Sanil and slug play distinct roles during breast carcinoma progression. Clinical Cancer Research 12, 5395-3402.
[39]Catalano, A., Rodilossi, S., Rippo, M.R., Caprari, P., and Procopio, A. (2004). Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells. The Journal of Biological Chemistry 279, 46706-46714.
[40]Wang, H., Brown, J., and Martin, M. (2011). Glycogen synthase kinase 3, a point of convergence for the host inflammatory response. Cytokine 53, 130-140.
[41]Wada, A. (2009). GSK-3 inhibitors and insulin receptor signaling in health, disease, and therapeutics. Frontiers in Bioscience 14, 1558-1570.
[42]Hoeflich, K.P., Luo, J., Rubie, E.A., Tsao, M.S., Jin, O., and Woodgett, J.R. (2000). Requirement for glycogen synthase kinase- 3beta in cell survival and NF-kappaB activation. Nature 406, 86-90.
[43]Doble, B.W., and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multitasking kinase. Journal of Cell Science 116, 1175-1186.
[44]Grimes, C.A., and Jope, R.S. (2001). The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Progress in Neurobiology 65, 391-426.
[45]Tian, X.R., Liu, Z.L., Niu, B., Zhang, J.L., Tan, T.K., Lee, S.R., Zhao, Y., Harris, D.C.H., and Zheng, G.P. (2011). E-Cadherin/beta-Catenin Complex and the Epithelial Barrier. J Biomed Biotechnol.
[46]Gilles, C., Polette, M., Mestdagt, M., Nawrocki-Raby, B., Ruggeri, P., Birembaut, P., and Foidart, J.M. (2003). Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Research 10, 2658-2664.
[47]Yook, J.I., Li, X.Y., Ota, I., Hu, C., Kim, H.S., Kim, N.H., Cha, S.Y., Ryu, J.K., Choi, Y.J., Kim, J., Fearon, E.R., and Weiss, S.J. (2006). Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nature Cell Biology 8, 1398-406.
[48]Kim, J.Y., Kim, Y.M., Yang, C.H., Cho, S.K., Lee, J.W., and Cho, M. (2012). Functional regulation of Slug ⁄ Snail2 is dependent on GSK-3β-mediated phosphorylation. FEBS Journal 279, 2929-39.
[49]Perez-Losada, J., Sanchez-Martin, M., Perez-Caro, M., Perez-Mancera, P.A., and Sanchez-Garcia, I. (2003). The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 22, 4205-4211.
[50]Shao, W., and Brown, M. (2004). Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Research 6, 39-52.
[51]Smith, C.L. (1998). Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biology of Reproduction 58, 627-632.
[52]Driggers, P.H., and Segars, J.H. (2002). Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends in Endocrinology Metabolism 13, 422-427.
[53]Leygue, E., Dotzlaw, H., Watson, P.H., and Murphy, L.C. (1998). Altered estrogen receptor alpha and beta messenger RNA expression during human breast tumorigenesis. Cancer Research 58, 3197-3201.
[54]Strom, A., Hartman, J., Foster, J.S., Kietz, S., Wimalasena, J., and Gustafsson, J.A. (2004). Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proceedings of the National Academy of Sciences of the United States of America 101, 1566-1571.
[55]Behrens, D., Gill, J.H., and Fichtner, I. (2007). Loss of tumorigenicity of stably ERβ-transfected MCF-7 breast cancer cells. Molecular and Cellular Endocrinology 274, 19-29.
[56]Paruthiyil, S., Parmar, H., Kerekatte, V., Cunha, G.R., Firestone, G.L., and Leitman, D.C. (2004). Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2cell cycle arrest. Cancer Research 64,423-428.
[57]Dhasarathy, A., Kajita, M., and Wade, P.A. (2007). The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Molecular Endocrinology 21, 2907-2918.
[58]Ye, Y., Xiao, Y., Wang, W., Yearsley, K., Gao, J.X., and Barsky, S.H. (2008). ERα suppresses slug expression directly by transcriptional repression. Biochemical Journal 416, 179-187.
[59]Atmaca, A., Wirtz, R.W., Werner, D., Steinmetz, K., Claas, S., Brueckl, W.M., J auml;ger, E., Al-Batran, S.E. (2015). SNAI2/SLUG and estrogen receptor mRNA expression are inversely correlated and prognostic of patient outcome in metastatic non-small cell lung cancer. BMC Cancer 15, 300
[60]Wik, E., R aelig;der, M.B., Krakstad, C., Trovik, J., Birkeland, E., Hoivik, E.A., Mjos, S., Werner, H.M., Mannelqvist, M., Stefansson, I.M., Oyan, A.M., Kalland, K.H., Akslen, L.A., and Salvesen, H.B. (2013). Lack of estrogen receptor-α is associated with epithelial-mesenchymal transition and PI3K alterations in endometrial carcinoma. Clinical Cancer Research 19, 1094-105.
[61]Kutz, S.M., Higgins, C.E., Samarakoon, R., Higgins, S.P., Allen, R.R., Qi, L., and Higgins, P.J. (2006). TGF-beta 1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Experimental Cell Research 312, 1093-105.
[62]Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y., Goumnerova, L.C., Black, P.M., Lau, C., Allen, J.C., Zagzag, D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., Lander, E.S., and Golub, T.R. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 415, 436-442.
[63]Kenny, P.A., Enver, T., and Ashworth, A. (2005). Receptor and secreted targets of Wnt-1/beta-catenin signalling in mouse mammary epithelial cells. BMC Cancer 5, 3.
[64]Zhang, Y., and Gordon GB. (2004). A strategy for cancer prevention: Stimulation of the Nrf2-ARE signaling pathway. Molecular Cancer Therapeutics 3, 885-893.
[65]Kasper, J.W., Niture, S.K., and Jaiswal, A.K. (2009). Nrf2/INrf2 (Keap1) signalingin oxidative stress. Free Radical Biology and Medicine 47,1304-1309.
[66]Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., and Nabeshima, Y. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications 236, 313-322.
[67]Khor, T.O., Huang, M.T., Prawan, A., Liu, Y., Hao, X., Yu, S., Cheung, W.K., Chan, J.Y., Reddy, B.S., Yang, C.S., and Kong, A.N. (2008). Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prevention Research 1, 187-191.
[68]Morito, N., Yoh, K., Itoh, K., Hirayama, A., Koyama, A., Yamamoto, M., and Takahashi, S. (2003). Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels. Oncogene 22, 9275-9281.
[69]Suzuki, T., Shibata, T., Takaya, K., Shiraishi, K., Kohno, T., Kunitoh, H., Tsuta, K., Furuta, K., Goto, K., Hosoda, F., Sakamoto, H., Motohashi, H., and Yamamoto, M. (2013). Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Molecular and Cellular Biology 33, 2402-2412.
[70]Mitsuishi, Y., Motohashi, H., and Yamamoto, M. (2012). The Keap1-Nrf2 system in cancers: Stress response and anabolic metabolism. Frontiers in Oncology 2, 200.
[71]Kim, T.H., Hur, E., Kang, S.J., Kim, J.A., Thapa, D., Lee, Y.M., Ku, S.K., Jung, Y., and Kwak, M.K. (2011). NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1a. Cancer Research 71, 2260-2275.
[72]Itoh, K., Mimura, J., and Yamamoto, M. (2010). Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxidants Redox Signaling 13, 1665-1678.
[73]Kim, W.D., Kim, Y.W., Cho, I.J., Lee, C.H., and Kim, S.G. (2012). E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells. Journal of Cell Science 125, 1284-1295.
[74]Cardamone, M.D., Bardella, C., Gutierrez, A., Di Croce, L., Rosenfeld, M.G., Di Renzo, M.F., and De Bortoli, M. (2009). ERalpha as ligand-independent activator of CDH-1 regulates determination and maintenance of epithelial morphology in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 106, 7420-7425.
[75]Ansell, P.J., Lo, S.C., Newton, L.G., Espinosa-Nicholas, C., Zhang, D.D., Liu, J.H., Hannink, M., and Lubahn, D.B. (2005). Repression of cancer protective genes by 17beta-estradiol: ligand-dependent interaction between human Nrf2 and estrogen receptor alpha. Molecular and Cellular Endocrinology 243, 27-34.
[76]Gorrini, C., Harris, I.S., and Mak, T.W. (2013). Modulation of oxidative stress as an anticancer strategy Nature Reviews Drug Discovery 12,931-947.
[77]Yao, Y., Brodie, A.M., Davidson, N.E., Kensler, T.W., and Zhou, Q. (2010). Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Research and Treatment 124, 585-591.
[78]Kajita, M., McClinic, K.N., and Wade, P.A. (2004). Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress.Molecular and Cellular Biology 24, 7559-7566.
[79]Chen, Y., Sun, Y., Chen, L., Xu, X., Zhang, X., Wang, B., Min, L., and Liu, W. (2013). miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Molecular Medicine Reports 7, 1579-84.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52249-
dc.description.abstract上皮間葉轉化 (epithelial mesenchymal transition,EMT) 對於癌細胞產生抗藥性及造成較差的預後有相當程度影響力。文獻指出,EMT過程的許多轉錄因子扮演重要的角色,如CDH1/2, ZEB1/2, Twist, Snail 1/2等。先前我們實驗室的研究發現在具 doxorubicin 抗藥性的MCF-7/ADR細胞株中表現出大量的Slug (Snail2) 蛋白質,而野生型MCF-7 (MCF-7/WT)則未偵測到。所以本研究主要探討外加Slug 對MCF-7/WT 細胞的影響。
首先利用反轉錄聚合酶連鎖反應技術,從 MCF-7/ADR 細胞中純化出Slug基因,再利用重組質體建構技術建構出帶有Slug 基因的質體,接著將質體利用轉染技術送入MCF-7/WT 細胞中瞬時大量表現,並以反轉錄聚合酶連鎖反應及西方墨點法方法觀察E-cadherin、ERα及抗氧化基因如Nrf2與HO-1的表現。
實驗結果顯示,大量表現Slug蛋白質的MCF-7細胞比對照組細胞具有更高的遷移能力,而上皮細胞標記因子,如E-cadherin、ERα的表現降低,並且具有較明顯的抗氧化基因如Nrf2、HO-1的表現,且有關細胞凋亡分子Bax、Bad亦受到Slug抑制,此結果顯示Slug的表現可能使細胞表現更多間質細胞特性的表徵。另外,細胞中加入不同濃度的doxorubicin,則大量表現Slug的細胞,其cleaved PARP的表現降低。文獻中指出GSK3β可調控下游Slug蛋白質的降解,所以本實驗利用GSK3β抑制劑 (LiCl) 來抑制GSK3β蛋白質,結果顯示LiCl與瞬時表現的Slug共同的存在下,能更快速促進上皮細胞標記因子,如E-cadherin、ERα的減少及促進抗氧化基因的表現。綜合所有結果顯示,Slug在誘導MCF-7/WT走向EMT中佔了重要的角色,未來Slug蛋白質在癌症治療上可以做為一個有效的標的。
zh_TW
dc.description.abstractEpithelial mesenchymal transition (EMT) is important for cancer cells progression and poor prognosis. Studies show that many transcription factors play important roles in EMT formation such as CDH1/2, ZEB1/2, Twist, Snail 1/2. Previous study from our labatory found that the doxorubicin-resistant breast cancer cell line MCF-7/ADR expressed high level of Slug (Snail2) protein expression, compared to the doxorubicin-sensitive breast cancer cell line MCF-7/WT. The aim of this thesis was to study the effect of Slug in MCF-7/WT cells.
The full-length coding sequence of Slug was amplified from MCF-7/ADR using RT-PCR. Then the cloning technique was applied to construct the recombinant plasmid pSlug. The pSlug was transiently transfected into MCF-7/WT cells and the expression of E-cadherin, ERα and antioxidant genes Nrf2 and HO-1 were detected.
Data revealed that in the Slug-overexpressed MCF-7/WT cells, the migration ability increased. The epithelial marker E-cadherin and ERα were downregulated and the antioxidant genes Nrf2 and HO-1 were upregulated, compared to control MCF-7/WT. The expression of apoptotic factors Bax and Bad was also downregulated in the Slug-overexpressed MCF-7/WT. On the other hand, the level of cleaved PARP protein decreased in the MCF-7/WT which transiently overexpressed Slug, accompanied with doxorubicin treatment. Since the Slug stability was regulated by GSK3β, the GSK3β inhibitor (LiCl) slightly stabilized Slug and accelerated downregulation of the expression of E-cadherin and ERα and upregulated the antioxidant genes Nrf2 and HO-1 in MCF-7/WT cells. Taken together, Slug may play an important role in EMT development in MCF-7/WT, and could be a crucial factor in cancer treatment in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:10:16Z (GMT). No. of bitstreams: 1
ntu-104-R01423021-1.pdf: 2471692 bytes, checksum: fa2aac3b0cd9fc9f9cb609d4a412299f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 i
Abstract iii
目錄 v
圖表目錄 viii
縮寫對照表 ix
第一章、緒論 1
1.1乳癌與MCF-7 1
1.2 上皮間葉轉化 (Epithelial-mesenchymal transition) 1
1.3 轉錄因子在上皮間葉轉化的重要性 2
1.4 調控上皮間葉轉化關鍵轉錄因子的主要路徑 4
1.5 Slug正常生理功能及在癌症中可能造成之影響 6
1.6 GSK3β生理功能與Snail家族交互作用 7
1.7 ERα與上皮間葉轉化的關聯性 8
1.8 Nrf2在癌症與上皮間葉轉化扮演的角色 9
1.9 Nrf2及ERα在上皮間葉轉化中關聯性 11
1.10 研究目的 11
第二章、材料與研究方法 12
2.1 實驗儀器 12
2.2實驗材料 13
2.3 培養液、培養基與緩衝液之配製 14
2.4 實驗方法 16
一、 培養基之製備 16
二、 細胞株培養 16
三、 質體建構 (Construction of plasmid ) 16
四、 小量質體製備 17
五、 大量質體製備 18
六、 轉染試驗 (Transfection ) 18
七、 細胞毒殺試驗 (MTT assay) 18
八、 傷口癒合試驗 (wound healing assay) 18
九、 反轉錄-聚合酶連鎖反應法 (Reverse Transcription-PCR) 19
十、 西方點墨法 (Western blot) 20
十一、 統計檢定 22
第三章、實驗結果 23
1.製備並確認帶有Slug基因的質體 23
2.Slug表現促進MCF-7細胞的遷移能力 23
3.Slug表現使MCF-7細胞降低上皮細胞標記因子表現並增加抗氧化基因表現 24
4.Slug表現降低doxorubicin引起的細胞凋亡分子PARP的表現 24
5.GSK3β抑制劑 (LiCl) 加速Slug引起的基因表現改變 25
第四章、討論 27
第五章、結論 31
第六章、圖表 32
第七章、參考文獻 49
dc.language.isozh-TW
dc.subjectMCF-7/WTzh_TW
dc.subjectSlugzh_TW
dc.subject上皮間葉轉化zh_TW
dc.subjectE-cadherinzh_TW
dc.subjectERαzh_TW
dc.subjectGSK 3βzh_TW
dc.subjectNrf2zh_TW
dc.subjectHO-1zh_TW
dc.subjectERαen
dc.subjectHO-1en
dc.subjectNrf2en
dc.subjectSlugen
dc.subjectepithelial mesenchymal transitionen
dc.subjectE-cadherinen
dc.subjectGSK 3βen
dc.subjectMCF-7/WTen
dc.titleSlug對乳癌細胞株MCF-7的影響zh_TW
dc.titleThe effect of Slug in the MCF-7 breast cancer cell lineen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許麗卿,楊家榮,張國友,駱雨利
dc.subject.keywordSlug,上皮間葉轉化,E-cadherin,ERα,GSK 3β,Nrf2,HO-1,MCF-7/WT,zh_TW
dc.subject.keywordSlug,epithelial mesenchymal transition,E-cadherin,ERα,GSK 3β,Nrf2,HO-1,MCF-7/WT,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college藥學專業學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved