Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52248
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭貽生(Yi-Sheng Cheng)
dc.contributor.authorHan-Chen Hsiehen
dc.contributor.author謝函蓁zh_TW
dc.date.accessioned2021-06-15T16:10:15Z-
dc.date.available2018-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation邱宜芳 (2003) 甘藷傷害誘導之蛋白質Ipomoelin的功能測定。 國立臺灣大學植物科學研究所碩士論文。
張維倢 (2011) 甘藷凝集素Ipomoelin四級結構與多種醣類之熱力學分析顯示其多變的結合特性。 國立臺灣大學植物科學研究所碩士論文。
黃詠琪 (2012) 不同聚合型式之甘藷凝集素其抗菌和抗蟲機制之研究。 國立臺灣大學植物科學研究所碩士論文。
劉凱倫 (2009) Ipomoelin與多種醣類MMP、MGP或唾液酸複合物之結構分析。 國立臺灣大學植物科學研究所碩士論文。
Abhilash J, Dileep KV, Palanimuthu M, Geethanandan K, Sadasivan C, Haridas M (2013) Metal ions in sugar binding, sugar specificity and structural stability of Spatholobus parviflorus seed lectin. J Mol Model 19: 3271-3278
Andersen NH, Cao B, Rodriguezromero A, Arreguin B (1993) Hevein: NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif. Biochemistry 32: 1407-1422
Aucouturier P, Pineau N, Brugier JC, Mihaesco E, Duarte F, Skvaril F, Preudhomme JL (1989) Jacalin: a new laboratory tool in immunochemistry and cellular immunology. J Clin Lab Anal 3: 244-251
Banerjee R, Das K, Ravishankar R, Suguna K, Surolia A, Vijayan M (1996) Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J Mol Biol 259: 281-296
Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Bi 16: 1-18
Bouckaert J, Loris R, Poortmans F, Wyns L (1995) Crystallographic structure of metal-free concanavalin A at 2.5 angstrom resolution. Proteins 23: 510-524
Bouckaert J, Poortmans F, Wyns L, Loris R (1996) Sequential structural changes upon zinc and calcium binding to metal-free concanavalin A. J Biol Chem 271: 16144-16150
Bourne Y, Astoul CH, Zamboni V, Peumans WJ, Menu-Bouaouiche L, Van Damme EJM, Barre A, Rouge P (2002) Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem J 364: 173-180
Bourne Y, Roig-Zamboni V, Barre A, Peumans WJ, Astoul CH, Van Damme EJM, Rouge P (2004) The crystal structure of the Calystegia sepium agglutinin reveals a novel quaternary arrangement of lectin subunits with a beta-prism fold. J Biol Chem 279: 527-533
Bourne Y, Zamboni V, Barre A, Peumans WJ, Van Damme EJM, Rouge P (1999) Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Struct Fold Des 7: 1473-1482
Chandra NR, Kumar N, Jeyakani J, Singh DD, Gowda SB, Prathima MN (2006) Lectindb: a plant lectin database. Glycobiology 16: 938-946
Chandran T, Sharma A, Vijayan M (2013) Generation of ligand specificity and modes of oligomerization in beta-prism I fold lectins. Adv Protein Chem Str 92: 135-178
Chang WC, Liu KL, Hsu FC, Jeng ST, Cheng YS (2012) Ipomoelin, a Jacalin-related lectin with a compact tetrameric association and versatile carbohydrate binding properties regulated by its n terminus. Plos One 7: e40618.
Chen MS (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15: 101-114
Chen YC, Chang HS, Lai HM, Jeng ST (2005) Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant Cell Environ 28: 251-259
Chen YC, Lin HH, Jeng ST (2008) Calcium influxes and mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. Plant Cell Environ 31: 62-72
Chen YC, Tseng BW, Huang YL, Liu YC, Jeng ST (2003) Expression of the ipomoelin gene from sweet potato is regulated by dephosphorylated proteins, calcium ion and ethylene. Plant Cell Environ 26: 1373-1383
Chrispeels MJ, Raikhel NV (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3: 1-9
Claes B, Dekeyser R, Villarroel R, Vandenbulcke M, Bauw G, Vanmontagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2: 19-27
Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475-486
DalCorso G, Manara A, Piasentin S, Furini A (2014) Nutrient metal elements in plants. Metallomics 6: 1770-1788
de Pater BS, Schilperoort RA (1992) Structure and expression of a root-specific rice gene. Plant Mol Biol 18: 161-164
DeLano WL (2009) PyMOL molecular viewer: updates and refinements. The 238th ACS National Meeting 238
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66: 486-501
Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: Experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Method Cell Biol 84: 79-113
Furstenberg-Hagg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14: 10242-10297
Gatehouse AMR, Davison GM, Stewart JN, Galehouse LN, Kumar A, Geoghegan IE, Birch ANE, Gatehouse JA (1999) Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breeding 5: 153-165
Hardman KD, Ainswort Cf (1972) Structure of Concanavalin A at 2.4 Å Resolution. Biochemistry-US 11: 4910-4919
Hasegawa H, Holm L (2009) Advances and pitfalls of protein structural alignment. Curr Opin Struc Biol 19: 341-348
Hester G, Kaku H, Goldstein IJ, Wright CS (1995) Structure of mannose-specific Snowdrop (Galanthus Nivalis) lectin is representative of a new plant lectin family. Nat Struct Biol 2: 472-479
Hildmann T, Ebneth M, Penacortes H, Sanchezserrano JJ, Willmitzer L, Prat S (1992) General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4: 1157-1170
Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271
Imanishi S, KitoNakamura K, Matsuoka K, Morikami A, Nakamura K (1997) A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-inducible protein. Plant Cell Physiol 38: 643-652
Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38: 128-150
Jeyaprakash AA, Jayashree G, Mahanta SK, Swaminathan CP, Sekar K, Surolia A, Vijayan M (2005) Structural basis for the energetics of jacalin-sugar interactions: Promiscuity versus specificity. J Mol Biol 347: 181-188
Jih PJ, Chen YC, Jeng ST (2003) Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiol 132: 381-389
Koharudin LM, Viscomi AR, Jee JG, Ottonello S, Gronenborn AM (2008) The evolutionarily conserved family of Cyanovirin-N homologs: structures and carbonhydrate specificity. Structure 16: 570-584
Lannoo N, Van Damme EJM (2010) Nucleocytoplasmic plant lectins. BBA-Gen Subjects 1800: 190-201
Lee X, Thompson A, Zhang ZM, Ton-that H, Biesterfeldt J, Ogata C, Xu LL, Johnston RAZ, Young NM (1998) Structure of the complex of Maclura pomifera agglutinin and the T-antigen disaccharide, Galbeta1,3GalNAc. J Biol Chem 273: 6312-6318
Lin JS, Lin HH, Li YC, King YC, Sung RJ, Kuo YW, Lin CC, Shen YH, Jeng ST (2014) Carbon monoxide regulates the expression of the wound-inducible gene ipomoelin through antioxidation and MAPK phosphorylation in sweet potato. J Exp Bot 65: 5279-5290
Loris R (2002) Principles of structures of animal and plant lectins. Bba-Gen Subjects 1572: 198-208
Loris R, Hamelryck T, Bouckaert J, Wyns L (1998) Legume lectin structure. Bba-Protein Struct M 1383: 9-36
Lovell SC, Davis IW, Arendall WB, 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50: 437-450
Meagher JL, Winter HC, Ezell P, Goldstein IJ, Stuckey JA (2005) Crystal structure of banana lectin reveals a novel second sugar binding site. Glycobiology 15: 1033-1042
Michiels K, Van Damme EJM, Smagghe G (2010) Plant-insect interactions: what can we learn from plant lectins? Arch Insect Biochem 73: 193-212
Mlsna D, Monzingo AF, Katzin BJ, Ernst S, Robertus JD (1993) Structure of recombinant ricin A chain at 2.3 angstrom. Protein Sci 2: 429-435
Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2: 2212-2221
Nomura K, Takahashi N, Hirose M, Nakamura S, Yagi F (2005) Overall carbohydrate-binding properties of Castanea crenata agglutinin (CCA). Carbohyd Res 340: 2004-2009
Osborne TB, Mendel LB, Harris IF (1905) A study of the proteins of the castor bean, with special reference to the isolation of ricin. AM J PHYSIOL 14: 259-286
Osorio F, Sousa GRE (2011) Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34: 651-664
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A 276: 307-326
Perez S, Sarkar A, Breton C, Drouillard S, Rivet A, Imberty A (2013) Glyco3D: A Portal for Structural Glycoscience. Retrieved from http://glyco3d.cermav.cnrs.fr
Peumans WJ, Hause B, Van Damme EJM (2000) The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. Febs Lett 477: 186-192
Peumans WJ, Vandamme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109: 347-352
Pineau N, Brugier JC, Breux JP, Becqgiraudon B, Descamps JM, Aucouturier P, Preudhomme JL (1989) Stimulation of peripheral-blood lymphocytes of HIV-infected patients by jacalin, a lectin mitogenic for human Cd4+ lymphocytes. Aids 3: 659-663
Plato A, Hardison SE, Brown GD (2015) Pattern recognition receptors in antifungal immunity. Semin Immunopathol 37: 97-106
Pratap JV, Jeyaprakash AA, Rani PG, Sekar K, Surolia A, Vijayan M (2002) Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-alpha-D-mannose: implications to the generation of carbohydrate specificity. J Mol Biol 317: 237-247
Rabijns A, Barre A, Van Damme EJM, Peumans WJ, De Ranter CJ, Rouge P (2005) Structural analysis of the jacalin-related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose. Febs J 272: 3725-3732
Rani PG, Bachhawat K, Misquith S, Surolia A (1999) Thermodynamic studies of saccharide binding to artocarpin, a B-cell mitogen, reveals the extended nature of its interaction with mannotriose [3,6-di-O-(alpha-D-mannopyranosyl)-D-mannose]. J Biol Chem 274: 29694-29698
Rao KN, Suresh CG, Katre UV, Gaikwad SM, Khan MI (2004) Two orthorhombic crystal structures of a galactose-specific lectin from Artocarpus hirsuta in complex with methyl-alpha-D-galactose. Acta Crystallogr D 60: 1404-1412
Rouge P, Peumans WJ, Barre A, Van Damme EJM (2003) A structural basis for the difference in specificity between the two jacalin-related lectins from mulberry (Morus nigra) bark. Biochem Bioph Res Co 304: 91-97
Rutenber E, Katzin BJ, Ernst S, Collins EJ, Mlsna D, Ready MP, Robertus JD (1991) Crystallographic Refinement of Ricin to 2.5 Å. Proteins 10: 240-250
Sankaranarayanan R, Sekar K, Banerjee R, Sharma V, Surolia A, Vijayan M (1996) A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold. Nat Struct Biol 3: 596-603
Sauvion N, Nardon C, Febvay G, Gatehouse AMR, Rahbe Y (2004) Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J Insect Physiol 50: 1137-1150
Sharma A, Vijayan M (2011) Quaternary association in beta-prism I fold plant lectins: Insights from X-ray crystallography, modelling and molecular dynamics. J Biosciences 36: 793-808
Singh DD, Saikrishnan K, Kumar P, Surolia A, Sekar K, Vijayan M (2005) Unusual sugar specificity of banana lectin from Musa paradisiaca and its probable evolutionary origin. Crystallographic and modelling studies. Glycobiology 15: 1025-1032
Sumner JB, Howell SF (1936) The identification of the hemagglutinin of the jack bean with concanavalin A. J Bacteriol 32: 227-237
Tateno H, Winter HC, Petryniak J, Goldstein IJ (2003) Purification, characterization, molecular cloning, and expression of novel members of jacalin-related lectins from rhizomes of the true fern Phlebodium aureum (L) J. Smith (Polypodiaceae). J Biol Chem 278: 10891-10899
Ueda K, Fukase Y, Katagiri T, Ishikawa N, Irie S, Sato TA, Ito H, Nakayama H, Miyagi Y, Tsuchiya E, Kohno N, Shiwa M, Nakamura Y, Daigo Y (2009) Targeted serum glycoproteomics for the discovery of lung cancer-associated glycosylation disorders using lectin-coupled ProteinChip arrays. Proteomics 9: 2182-2192
Van Damme EJM, Barre A, Mazard AM, Verhaert P, Horman A, Debray H, Rouge P, Peumans WJ (1999) Characterization and molecular cloning of the lectin from Helianthus tuberosus. Eur J Biochem 259: 135-142
Van Damme EJM, Barre A, Rouge P, Peumans WJ (2004) Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9: 484-489
Van Damme EJM, Hause B, Hu JL, Barre A, Rouge P, Proost P, Peumans WJ (2002) Two distinct jacalin-related lectins with a different specificity and subcellular location are major vegetative storage proteins in the bark of the black mulberry tree. Plant Physiol 130: 757-769
Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant Lectins. Adv Bot Res 48: 107-209
Van Damme EJM, Peumans WJ, Barre A, Rouge P (1998) Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17: 575-692
Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72: 1538-1550
Wah DA, Romero A, del Sol FG, Cavada BS, Ramos MV, Grangeiro TB, Sampaio AH, Calvete JJ (2001) Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. J Mol Biol 310: 885-894
Yagi F, Iwaya T, Haraguchi T, Goldstein IJ (2002) The lectin from leaves of Japanese cycad, Cycas revoluta Thunb. (gymnosperm) is a member of the jacalin-related family. Eur J Biochem 269: 4335-4341
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52248-
dc.description.abstract植物凝集素 (plant lectin)為一種醣結合蛋白質,能和醣類進行專一且可逆的結合,具抗蟲抗菌的能力,是常見植物防禦蛋白質。本實驗的研究對象為甘藷凝集素(Ipomoelin, IPO),選殖自甘藷台農57號 (Ipomoea batatas cv. Tainung 57),歸類於波羅蜜相關凝集素 (Jacalin-related lectin, JRL) 家族之一員,對甲基化的單醣具有較強之結合能力。根據先前實驗結果,發現IPO可能與鎘離子結合,推測IPO具有與金屬離子結合的能力,此特性在JRL家族中尚未被報導。
本研究以蛋白質結晶結構及生物物理分析,探究IPO之金屬結合能力。由IPO–MeMan–Cd及IPO–MeMan–Co共結晶後,解出各為1.9 Å的IPO螯合重金屬鎘、鈷的蛋白質四級結構。原態IPO分子為四聚體,第8個氨基酸Histidine附近,皆具有一個金屬結合位置,且在每一個四聚體的中央,具有兩個金屬結合位置,顯示IPO除了具有醣結合特性,亦具有螯合金屬離子的能力;由等溫滴定微熱量法 (isothermal titration calorimetry),分析IPO與各種二價金屬結合能力,確認一個IPO分子可結合兩個金屬離子,並可與重金屬鎘、鈷、鋅、銅、鎳、二價鐵 (II)、三價鐵 (III),而不會結合植物必須金屬元素鈣、鎂、錳,且醣與金屬受質之親和性不會互相影響。以差異性掃描螢光法 (Differential scanning fluorimetry, DSF) 分析IPO蛋白質螯合金屬後之變性溫度 (Tm),其Tm值與未結合受質之wtIPO蛋白質無顯著差異,顯示金屬離子的存在,不會增加IPO結構的穩定性。
本研究結果表明IPO蛋白質能夠與醣分子及金屬離子結合,而結合金屬後的蛋白質是否能強化其抗蟲能力,是進一步要研究的目標。
zh_TW
dc.description.abstractLectins, one of the wound-inducible proteins, play important roles in plants defense systems when plants respond to biotic stress and mechanical wounding. Ipomoelin (IPO), belonging to jacalin-related lectin (JRL) family, is a plant defense protein isolated from sweet potato (Ipomoea batatas cv. Tainung 57). Previous studies identified that IPO can specifically bind to various monocarbohydrates with methyl group. Surprisingly, IPO was found that this protein could bind to not only carbohydrates but also cadmium (Cd).
In this study, the structures of IPO in complex with MeMan and cobalt (IPO–MeMan–Co), and in complex with MeMan and cadmium (IPO–MeMan–Cd) are resolved at resolution 1.9 Å. Both of IPO–MeMan–Co and IPO–MeMan–Cd form a tetrameric association and there were metal bind sites adjacent to His 8. Moreover, two metals were chelated in the middle of the tetramer. The results of isothermal titration calorimetry (ITC) indicate that IPO could bind to cobalt, cadmium, zinc, nickel, copper, ferrous (II) and ferric (III), but not to essential metals in plants, such as calcium, magnesium and manganese. The melting point (Tm) of IPO in complex with different metals are analyzed by differential scanning fluorimetry (DSF). The data showed that there was no significant change of Tm while IPO bind to metals, and demonstrated that the metal ion would not provide the stabilized function for IPO structure. Based on the results of IPO and metal ion binding assays, it revealed that IPO would contain the capacity to bind to carbohydrates and heavy metal ions. For further applications of IPO in antipest and antipathogen, IPO would have the potentials toward pesticide.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:10:15Z (GMT). No. of bitstreams: 1
ntu-104-R01b42001-1.pdf: 7384852 bytes, checksum: b2ec453154e9340f5f90e26f156e4f5d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 I
Abstract II
縮寫對照表 III
目錄 V
圖目錄 VIII
表目錄 X
第一章 前言 1
1-1 凝集素 (lectins) 1
1-2 植物凝集素 (plant lectins) 1
1-2-1 豆科凝集素 (Legume lectins) 家族 2
1-2-2 具有橡膠素功能區塊凝集素 (agglutinin with Hevein doamin) 家族 3
1-2-3 三葉形狀凝集素 (b-trefoil lectin) 家族 3
1-2-4 甘露糖專一植物凝集素 (b-D-mannose-specific plant lectin) 家族 4
1-2-5 藍藻抗病毒蛋白質同源凝集素 (Cyanovirin-N homologs lectin) 家族 4
1-2-6 b稜柱體植物凝集素 (b-prism plant lectin) 家族 4
1-3 波羅蜜相關凝集素 (Jacalin-related lectins, JRL) 家族 5
1-3-1 半乳糖 (galactose-specific JRL, gJRL) 次家族 5
1-3-2 甘露糖 (mannose-specific JRL, mJRL) 次家族 5
1-3-3 JRL家族蛋白質四級結構 6
1-3-4 JRL家族與相關醣分子結合之研究 7
1-4 甘藷凝集素 (Ipomoelin) 之上游調控機制 8
1-5 甘藷凝集素 (Ipomoelin) 之蛋白質功能 8
1-6 甘藷凝集素 (Ipomoelin) 之蛋白質結構 9
1-7 研究目標 11
第二章 材料與方法 12
2-1 實驗材料 12
2-2 實驗方法 12
2-2-1 IPO蛋白質之表現與純化 12
2-2-2 IPO蛋白質與金屬複合物蛋白質結晶實驗與結構分析 15
2-2-3 IPO及其突變蛋白質與金屬結合能力分析 17
2-2-4 IPO蛋白質與金屬複合物之熱穩定性測定 19
第三章 結果 20
3-1 IPO蛋白質表現與純化 20
3-2 IPO蛋白質、MeMan與金屬離子複合體之結構分析 20
3-2-1 IPO蛋白質、MeMan與鈷離子複合體 20
3-2-2 IPO蛋白質、MeMan與鎘離子複合體 23
3-3 IPO蛋白質、單醣分子與鈷離子複合體之結構分析 25
3-3-1 wtIPO蛋白質、醣類與鈷離子結晶 25
3-3-2 X-ray繞射實驗結果與處理 26
3-4 IPO蛋白質與不同金屬結合能力之分析 26
3-4-1 wtIPO蛋白質與不同金屬結合能力 26
3-4-2 IPO蛋白質與MeMan複合體對鈷、鎘結合能力之分析 28
3-5 IPO蛋白質與金屬複合體之熱穩定度探討 29
3-5-1 差異性螢光掃描法 (Differential Scanning Fluorimetry, DSF) 29
第四章 討論 30
4-1 IPO蛋白質與MeGlc複合物之結構分析 30
4-2 IPO蛋白質、MeMan與金屬離子複合物整體結構之分析 30
4-3 金屬離子與IPO蛋白質分子結合能力探討 31
4-4 金屬離子、醣分子與IPO蛋白質之關係 32
第五章 結論 34
參考文獻 35
圖表 44
附錄 75
dc.language.isozh-TW
dc.title甘藷凝集素與不同金屬結合之晶體結構與熱力學分析zh_TW
dc.titleStructural and thermodynamic analysis of Ipomoelin
in complex with metal ions reveal its metal binding properties
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊健志(Chien-Chih Yang),張世宗(Shih-Chung Chang),蔡麗珠(Li-Chu Tsai)
dc.subject.keyword植物凝集素,甘藷凝集素,蛋白質結構,等溫滴定微熱量法,金屬結合,zh_TW
dc.subject.keywordplant lectin,ipomoelin,protein structure,isothermal titration calorimetry,metal binding,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved