Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52246
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳(Hsiao-feng Lo)
dc.contributor.authorBI-Jan Kuen
dc.contributor.author古璧甄zh_TW
dc.date.accessioned2021-06-15T16:10:13Z-
dc.date.available2020-08-19
dc.date.copyright2015-08-19
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation王玉芬. 2008. 超細微化研磨對國產大豆原料之機能性分析. 國立臺灣大學農業化學系研究所碩士論文. 臺北.
田學軍、羅晶、羅冰. 2010. 高溫脅迫下對綠豆下胚軸生長和抗熱性物質的影響. 西南農業學報. 3: 707-709.
李合生. 2003. 植物生理生化實驗原理. 高等教育出版社. 中國. 北京.
沈馨仙、郭旻奇、張思平、鐘佳玲、楊榮季. 2010. 抗氧化活性評估方法. 藥學雜誌. 26:132-137.
官振群. 1998. 綠豆抗豆象相關cDNA的表現與生物活性研究. 國立臺灣大學農業化學系研究所碩士論文. 臺北.
林景堉. 1997. 綠豆中抗椿象相關基因的選殖. 國立臺灣大學農業化學系研究所碩士論文. 臺北.
林湛. 2004. 綠豆抗蟲品系VC6089A及其抗蟲蛋白VrD1對四紋豆象之抗性作用與機制.國立臺灣大學昆蟲學系研究所碩士論文. 臺北.
洪志宏、王淑芬、蔡慧思、蔡文翔、黃兆君、王海龍. 2008. 大豆胰蛋白酶抑制劑之抗氧化能力分析. 元培學報. 15:25-36.
徐奇友、許紅、馬建章. 2006. 大豆中營養因子與抗營養因子研究進展. 中國油脂. 11:17-20.
高景輝. 2005. 植物生理學詞彙. 睿煜出版社. 屏東. 臺灣.
張孟楫. 2012. 脫毒程序對麻瘋樹籽渣中毒性物質及抗營養因子的影響. 中原大學化學工程學系碩士論文. 桃園.
張芳魁. 2008. 臺灣常用蔬菜的抗氧化力指標FRAP與總酚含量. 國立臺灣大學園藝暨景觀學系研究所碩士論文. 臺北.
張喜寧、林瑞松. 1977. 綠豆芽生產之研究 (一)物理加壓生產綠豆芽之生理研究. 中國園藝. 23: 129-134.
張德純、范雙喜、谷建田、王德檳、韓沛新、徐秀容、王小琴. 1998. 芽菜的營養. 農業世界雜誌. 173:61-64.
曹幸之、羅筱鳳. 2002. 蔬菜(II). 復文書局. 臺南. 臺灣.
陳詠哲. 2001. 綠豆Vigna radiata VC 6089A中抗豆象蛋白質VrCRP的純化及其生物活性分析. 國立臺灣大學農業化學系研究所碩士論文.臺北.
陳慶三. 2005. 抗蟲蛋白質. 植物保護生技. 392:12-15.
趙文婉、張珍田、周淑姿. 2001. 五種食用豆芽50%乙醇萃取液抗氧化性之研究. 中華生質能源學會會誌. 20:113-122.
歐陽禹. 1986. 芽菜與豆. 青春出版社. 臺北. 臺灣.
鄭又瑄. 2011. 以氧自由基吸收能力法(ORCA)及FC試劑還原能力法(FCR)分析國內蔬菜之抗氧化能力. 國立臺灣大學園藝暨景觀學系研究所碩士論文. 臺北.
鄭榮瑞. 2008. 綠豆芽生長環境因子與生產模式之研究. 國立中興大學生物產業機電工程學系研究所博士論文. 臺中.
薛宜青. 2003. 綠豆防禦素VrD1之抗蟲活性及其鉀離子通道作用分子機制探討. 國立臺灣大學醫學系研究所碩士論文. 臺北.
Anjum, N.A., S. Umar, M. Iqbal, and N.A. Khan. 2011. Cadmium causes oxidative stress in mungbean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism. Russia J. Plant Physiol. 58:92-99.
Ames, B.N. 1983. Dietary carcinogens and anti carcinogens, oxygen radicals and degenerative diseases. Science. 221:1256-1264.
Ames, B.N. M.K. Shigenaga, and T.M. Hagen. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U S A. 90:7915-7922.
AVRDC (Asian Vegetable research and Development Center). 1986. Progress Report. Shanhua, Taiwan.
Blois, I.F.F. 2000. Evolution of dietary antioxidants. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 136:113-126.
Boudrant, J. 1990. Microbial processes for ascorbic acid biosynthesis: a review. Enz. Microb. Technol. 12:322-329.
Cevallos-Casals, B. A. and L. Cisneros-Zevallos. 2010. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem. 119:1485–1490.
Dinis, T.C.P., V.M.C. Madeira, and L.M. Almeida. 1994. Action of phenolic derivatives (Acetminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 15:161-169.
Decker, E.A. and B. Welch. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agr. Food Chem. 38:674-677.
Duthie, S.J., A. McE. Jenkinson, and A. Crozier, W. Mullen, L. Pirie and J. Kyle. 2006. The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur. J. Nutr. 45:113-122.
El-Adway, T.A. 2003. Nutritional potential and functional properties of germinated mungbean, pea and lentil seeds. Plant Food Hum. Nutr. 58:1-13.
Fahey, J.W., Y. Zhang, and P. Talalay. 1997. Broccli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Nati. Acad. Sci. USA. 94:10367-10372.
Frias, J., H. Zieliński, M.K. Piskuła, H. Kozłowska, and C. Vidal-Valverde. Inositol phosphate content anf trypsin inhibitor activity in ready-to-eat cruciferous sprouts. Food Chem. 93:331-336.
Greenberg, E.R., and M.B. Sporn. 1996. Antioxidant vitamins, cancer and cardiovascular disease. N. Eng. J. Med. 334:1189-1190.
Guo, R., Yuan, G., and Q. Wang. 2011. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci. Hortic. 128:159–165.
Halliwell, B. M.A. Murcia, S. Chirico, and O.I. Aruoma. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr. 35:7-20.
Hamerstrand, G.E., L.T. Black, and J.D. Glover. 1981. Trypsin inhibitors in soy bean product: modification of the standard analytical procedure. Cereal Chem. 58:42-45.
Heinonen, M.I., A.S. Meyer, and E.N. Frankel. 1998. Antioxidant activity of berry phenolics on human low density lipoprotein and liposome oxidation. J. Agric. Food Chem. 46:4101-4112.
Hirose, M., K. Ozaki, and K. Takaba. 1991. Modifying effects of the naturally occurring antioxidants γ-oryzanol, phytic acid, tannin acid and n-tritriacontane-16,18-dione in a rat wide- spectrum organ carcinogenesis model. J. Carcinogenesis 12:1917-1921.
Huang, D.J., B.X. Ou, and R.L. Prior. 2005. The chemistry behind antioxidant capacity assays. J. Agri. Food Chem. 53:1841-1856.
Huang, N.T. and T. Ferraro. Phenoic compounds in food and their effects on health II: antioxidants and cancer prevention. American Chemical society, Washington, 1992.
Jom, K.N. 2012. Metabolite profiling of sprouting mungbeans (Vigna radiata). Munchen Technology Univ. Germany.
Kanatt, S.R., K. Arjun, and A. Sharma. 2011. Antioxidant and antimicrobial activity of legume hulls. Food Res. Int. 44:3182-3187.
Kaur, C. and H.C. Kapoor. 2001. Antioxidant activity and quality of minimally processed India cabbage (Brassica oleracea var. Capitata). J. of Food proc. preserv. 25:367-380.
Kim, S.L., S.K. Kim, and C.H. Park. 2004. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 37:319-327.
Kim, K.H., R. Tsao, R. Yang, and S.W. Cui. 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95:466-473.
Kirchhoff, E. 2008. Souci-Fachmann-Kraut, Food Composition and Nutrition Tables (7th ed.). Med. Pharm. Sci. Public, Stuttgart, Germany.
Kurztweil, P. 1999.Questions keep sprouting about sprouts. FDA Consumer Res. 33:18-22.
Kwok, D. and K. Shetty. 1998. Effects of proline and proline analogs on total phenolic and rosmarinic acid levels in shoot clones of thyme (Thymus vulgaris L). J. Food Biochem. 22:37–51.
Lamaison, J.L. and Carnat, A. 1990. Teneurs en acide rosmarinique, en dérivés hydroxycinnamiques totaux et activités antioxidants chez les Apiacées, les Borragina cées et les Lamiacées médicinales. Ann Pharm Fr. 48:103-108.
Larimore, B. 1975. Sprouting for all seasons. Horizon Publishers, UT.
Lim, J., K. Park, B. Kim, J. Jeong, and H. Kim. 2012. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 135:1065-1070.
López-Amorós, M.L., T. Hernandez, and I. Estrella. 2006. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food. Compost. Anal. 19:277-283.
Makkar, H.P.S., P. Siddhuraju, and K. Becker. 2007. Phytic acid. Plant secondary metabolites. Totowa, New Jersey. Humana Press Inc.
Martinez-Villaluenga, C., J. Frias, P. Gulewicz, K. Gulewicz, and C. Vidal-Valverde. 2008. Food safety evaluation of broccoli and radish sprouts. Food Chem. Toxoicol. 46:1635-1644.
McCue, P.P. and K. Shetty. 2005. Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 40:1791-1797.
Miller, H.E., F. Rigelhof, L. Marquart, A. Prakash, and M. Kanter. 2000. Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J. Am. Coll. Nutr. 19:312-319.
Moreno, D.A., M. Carvajal, C. López-Berenguer, and C. García-Viguera. 2006. Chemical and biological characterization of nutraceutical compounds of broccoli. J. Pharm. Biomed. Anal. 41:1508-1522.
Mubarak, A. 2005. Nutritional composition and antinutritional factors of mungbean seed (Phaseolus aureus) as affected by some home traditional process. Food Chem. 89:489-495.
Nichenametla, S.N., T.G. Taruscio, D.L. Barney, and J.H. Exon. 2006. A review of the effects and mechanisms of polyphenolics in cancer. Crit. Rev. Food Sci. Nutr. 46:161-183.
Nair, R.M., D. Thavarajah, P. Thavarajah, R.R. Giri, D. Ledesma, R. Yang, P. Hanson, W. Easdown, J. Hughes, and J.D.H. Keatinge. 2015. Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. J. Food Compost. Anal. 39:23-32.
Norazalina S., M.E. Norazalina, I. Hairuszah, and H.S. Nurul. 2011. Optimization of optimum condition for phytic acid extraction from rice bran. Afr. J. Plant Sci. 5:168-176.
Oh, M. and C.B. Rajashekar. 2009. Antioxidant content of edible sprouts: effects of environmental shocks. J. Sci. Food Agric. 89:2221-2227.
Park, H.R., H.J. Ahn, S.H. Kim, C.H. Lee, M.W. Byun, and G.W. Lee. 2006. Determination of the phytic acid levels in infant foods using different analytical methods. Food Control. 17:727-732.
Paja˛k, P., R. Socha, D. Gałkowska, J. Ro-znowski, and T. Fortuna. 2014. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem.143:300–306.
Pérez-Balibrea, S., D.A. Moreno, and C. García-Viguera. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. J. Sci. Food Agric. 88:904-910.
Poehlman, J.M. 1991. The mungbean. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India.
Price, T.V. 1988. Seed sprout production for human consumption—a review. Can Inst. Food Sci. Technol. J. 21:57-65.
Prior, R.L., X.L. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agri. Food Chem. 53:4290-4302.
Purvis, A.C. 2004. Regulation of oxidative stress in horticulture crops. Hort. Sci. 39:930-932.
Quettier-Deleu, C., B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, M. Cazin, J. Cazin, F. Bailleul, and F. Trotin. 2000. Phenolic compounds and antoxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 72:35-42.
Randhir, R., D. Vattem, and K. Shetty. 2004. Solid-state bioconversion of fava bean by Rhizopus oligosporus for enrichment of phenolic antioxidants and L-DOPA. Innov. Food Sci. Emerg. 5:235-244.
Randhir, R., Y.T. Lin, and K. Shetty. 2004. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mungbean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 39:637-646.
Sattar, A., S.K. Durrani, F. Mahmood, A. Ahmad, and I. Khan. 1988. Effect of soaking and germination temperatures on selected nutrients and antinutrients of mungbean. NIFA. 34:111-120.
Schreiner, M. 2005. Vegetable crop management strategies to increase the quantity of phytochemicals. Eur. J. Nutr. 44:85-94.
Singh, J., M. Rai, A.K. Upadhyay, A. Bahadur, S.N.S. Chaurasia, and K.P. Singh. 2006. Antioxidant phytochemicals in broccoli (Brassica oleracea L. var. italic Plenck) entries. J. Food Sci. Technol. 43:391-393.
Singleton, V.L. and J. A.Jr. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic. 16:144-153.
Świeca, M., U. Gawwilk-Dziki, D. Kowalczyk, and U. Zlotek. 2012. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 140:87-95.
Świeca, M. 2015. Elicitation with abiotic stresses improves pro-health constituents, antioxidant potential and nutrientional quality of lentil sprouts. Saudi J. Biol. Sci. 22:409-416.
Świeca, M. and U. Gawlik-Dziki. 2015. Effects of sprouting and postharvest storage under cool temperature conditions on starch content and antioxidant capacity of green pea, lentil and young mungbean sprouts. Food Chem. 185:99-105.
Tang D., Y. Dong, H. Ren, L. Li, and C. He. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mungbean and its sprouts (Vigna radiata). Chem. Cent. J. 8:4-13.
Troll, W., K. Frankel, and R. Wiesner. 1986. Protease inhibitors: their roles as modifiers of carcinogenic processes. J. Adv. Exp. Med. Biol. 199:153-165.
Trugo, L.C. Muzquiz, M.M. Pedrosa, G. Ayet, C. Burbano, C. Cuadrado, and E. Cavieres. 1999. Influence of malting on selected components of soya bean, black bean, chickpea and barley. Food Chem. 65:85-90.
Tsai, M. and H.C. Chen. 2006. Antioxidative and biological activity of flavonoids in fruits and vegetables. J. Chin. Chem. Soc. 64:353-315.
Vanamala, J., L. Reddivari, K.S. Yoo, L.M. Pike, and B.S. Patil. 2006. Variation in the content of bioactive flavonoids in the different brands of orange and grapefruit juices. J. Food Comp. Anal. 19:157-166.
Vucenik, I. and A.M. Shamsuddin. 1994. Inositol hexaphosphate(phytic acid)is rapidly absorbed and metabolized by murine and human malignant cell in vitro. J. Nutri. 124:861-868.
Wei, J., H. Miao, and Q. Wang. 2011. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts. Sci. Hortic. 129:535-540.
Weiss, A. and W.P. Hammes. 2003. Thermoal seed treatment to improve the food safety status of spouts. J. Appl. Botany. 77:152-155.
Wolk, A., J.E. Manson, M.J. Stampfer, G.A. Colditz, F.B. Hu, F.E. Speizer, C.H. Hennekens, and W.C. Willett. 1999. Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. J. A. M. A. 281:1998-2004.
Yuan, G., X. Wang, and Q. Wang.2010. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 121:1014-1019.
Zhou, K. and L. Yu. 2004. Effect of extraction solvent on wheat bran antioxidant activity estimation. Lebensm. Wiss. Technol. 37:717-721.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52246-
dc.description.abstract本試驗以綠豆抗豆象品系VC6089A、其近同源但不抗豆象品系VC1973A及日正綠豆 (日正食品工業股份有限公司,南北坊綠豆) 為材料,探討於黑暗中栽培高植化素含量綠豆芽之最適環境條件。綠豆種子於20˚C、26˚C與32˚C浸水0、4、8及12小時,其乾重隨浸種時間延長而降低。以四種密度栽培綠豆芽,收穫指數 (harvest index) 以7 g·cm-2種子最佳,其下胚軸較長、總類黃酮 (total flavonoids) 含量較高;密度試驗中,綠豆芽總酚類含量與收穫指數之間 (r=0.74***) 、總酚類 (total phenolics) 含量及總類黃酮含量之間 (r=0.77***) 皆呈正相關。以壓重0、100、200、300、400 g·51.84 cm-2栽培綠豆芽,VC1973A及日正綠豆於400 g·51.84 cm-2處理下,其豆芽下胚軸較粗短,根長亦較短;壓重試驗中,綠豆芽總類黃酮含量與DPPH自由基清除能力[α,α-diphenyl-β-picrylhydrazyl radical scavenging activity]間,以及總類黃酮含量與FRAP鐵離子氧化還原能力 (ferric reducing antioxidant power, FRAP ) 間之相關係數r分別為0.82***與0.64***。繼以16 h/8 h為一週期,於26˚C/20˚C、26˚C/23˚C、26˚C/26˚C、29˚C/20˚C、29˚C/23˚C及29˚C/26˚C栽培綠豆芽,VC6089A在29˚C/23˚C 及26˚C/26˚C栽培之鮮重較佳,VC1973A與日正綠豆則分別於29˚C/23˚C與26˚C/26˚C之鮮重較佳;綠豆芽之可溶性固形物及可溶性蛋白質含量顯著受栽培溫度組合之影響;而VC1973A綠豆芽之總類黃酮及總酚類含量皆較其他兩綠豆芽高。相較於0、10、20與50 mM氯化鈉溶液,以15 mM氯化鈉溶液栽培綠豆芽時,其產量較高、總類黃酮及總酚類含量最高,且VC1973A綠豆芽之亞鐵離子螯合能力(Fe2+ chelating ability)較高;氯化鈉試驗中,綠豆芽鮮重分別與可溶性糖含量 (r=0.83***) 、總類黃酮含量 (r=0.84***) 、總酚類含量 (r=0.85***) 及DPPH自由基清除能力 (r=0.85***) 皆呈高度正相關,而總酚類與總類黃酮含量或可作為DPPH自由基清除能力及FRAP鐵離子氧化還原能力之參考指標。以0、10、25、50、75及100 mM葡萄糖溶液栽培綠豆芽,50 mM組之抗壞血酸及總類黃酮含量較高,100 mM組含有較多的可溶性固形物及可溶性蛋白質。綜之,VC1973A綠豆芽之鮮重、外觀及植化素含量皆優於以VC6089A及日正綠豆栽培之綠豆芽。故建議於全黑暗環境下,以種子密度7 g·cm-2、壓重400 g·51.84 cm-2、15 mM氯化鈉溶液及29˚C 16 h /23˚C 8 h,栽培VC1973A綠豆芽3天,可獲得總類黃酮 (0.38 mg·g-1DW) 及總酚類含量 (11.1 mg·g-1DW) 、亞鐵離子螯合能力 (84.8 % of 50 mg DW·mL-1) 、DPPH自由基清除能力 (54.1 % of 50 mg DW·mL-1)與FRAP鐵離子氧化還原能力 (150.9 µmol FeSO4·g-1DW) 最高、且產量 (54.5 g FW·51.84 cm-2) 亦佳之綠豆芽。zh_TW
dc.description.abstractTwo isogenic lines of mungbean, bruchid-resistant VC6089A and bruchid-susceptible VC1973A, and Sunright mungbean (Sunright Foods Co.) were used as experimental material to study the optimal environmental condition of cultivating mungbean sprout with high phytochemicals contents in the dark. Mungbean seeds were soaked at 20˚C, 26˚C and 32˚C for 0、4、8 and 12 h. Seed dry weight decreased as the soaking time extending to 12 h. Among 4 planting densities, 7 g·cm-2 treatment showed the highest harvest index, longer hypocotyl length and higher total flavonoids content in VC6089A and VC1973A sprouts. Total phenolics content in mungbean sprouts was highly positively related to harvest index (r=0.74***), so did the total phenolics content to total flavonoids content (r=0.77***). Among forcing pressures of 0, 100, 200, 300 and 400 g·51.84 cm-2, VC1973A mungbean sprout cultivated under 400 g·51.84 cm-2 showed shorter and thicker hypocotyl also shorter root. In forcing pressure experiment, correlation coefficient (r) of total flavonoids content to α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) were 0.82*** and 0.64***, respectively. Among 6 combinations of temperatures based on 16 h/8 h cycle, fresh weights of VC6089A sprouts were the highest at 29˚C/23˚C and 26˚C/26˚C, while Sunright and VC1973A sprouts at 26˚C/26˚C and 29˚C/23˚C, respectively. Soluble solids and soluble protein contents of mungbean sprouts were both affected by the cultivating temperature combinations. VC1973A sprouts has the highest content of total flavonoids and total phenolics than other 2 entries. Comparing to 0, 10 and 25 mM NaCl solution, sprouts cultivated in 15 mM NaCl solution exhibited higher fresh weight and total flavonoids and total phenolics contents than under 0, 10, 20 and 50 mM NaCl treatments. VC1973A sprouts also showed higher Fe2+ chelating ability in 15 mM NaCl treatment. In NaCl experiment, sprout fresh weight was positively related to soluble sugar content (r=0.83***), total flavonoids content (r=0.84***), total phenolics content (r=0.85***) and DPPH scavenging ability (r=0.85***) in NaCl experiment. Contents of total phenolics and flavonoids contents could be reference values of DPPH radical scavenging activity and FRAP. Cultivation sprouts with 0, 10, 25, 50, 75 and 100mM 5 glucose solution, 50 mM treatment could increase ascorbic acid and total flavonoids in mungbean sprouts. Sprouts grown in 100 mM glucose solution had more soluble solid and protein. In conclusion, VC1973A sprouts had higher fresh weight and phytochemicals contents than VC6089A and Sunright sprouts. The mungbean sprout would have higher total flavonoids (0.38 mg·g-1DW) and total phenolics (11.1 mg·g-1DW) contents and better Fe2+ chelating ability (84.8 % of 50 mg DW·mL-1), DPPH scavenging ability (54.1 % of 50 mg DW·mL-1), and FRAP (150.9 µmol FeSO4·g-1DW), and higher fresh weight (54.5 g FW·51.84 cm-2). VC1973A seeds are suggested to be cultivated with 7 g·cm-2 sowing density, 400 g·51.84 cm-2 forcing pressure, 15 mM NaCl solution at 29˚C 16 h/23˚C 8 h in the dark.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:10:13Z (GMT). No. of bitstreams: 1
ntu-104-R01628123-1.pdf: 7558950 bytes, checksum: 3e72e025b2c6ac898dbd385cb6ecc170 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 III
第一章 前言 (Introduction) 10
第二章 前人研究 (Literature review) 12
一、綠豆抗豆象品系VC6089A及其抗豆象蛋白VRCRP 12
(一) 綠豆概述 12
(二) 綠豆之倉儲蟲害 12
(三) 抗豆象防禦素VrCRP 12
(四) VC1973A與VC6089A 13
(五) 豆科植物種子中其他可延遲或抑制豆象及其幼蟲生長之物質 14
二、綠豆芽之營養價值及抗氧化力 14
(一) 種子與芽菜 14
(二) 綠豆芽之營養價值 15
(三) 活性氧、自由基與抗氧化物質 16
(四) 抗氧化力分析 20
(五) 抗營養物質 22
三、栽培條件對於芽菜生長之影響 23
(一) 溫度 23
(二) 加壓栽培 23
(三) 添加物栽培 24
第三章 材料與方法 (Materials and Methods) 26
一、試驗材料 26
二、試驗藥品及設備 26
(一) 試驗藥品 26
(二) 試驗設備 26
三、試驗設計 26
(一) 浸種溫度及時間試驗 26
(二) 播種密度試驗 26
(三) 重物加壓處理試驗 27
(四) 溫度組合栽培試驗 27
(五) 添加物栽培試驗 27
四、調查項目 28
(一) 生長及產量 28
(二) 營養價值及品質 28
五、分析方法 29
(一) 試驗藥品 29
(二) 試驗設備 30
(三) 營養物質含量分析 30
(四) 抗氧化物含量分析 31
(五) 抗氧化力分析 32
(六) 抗營養物質含量分析 33
六、統計方法 34
第四章 結果 (Results) 35
一、浸種溫度及時間試驗 35
二、播種密度試驗 35
三、重物加壓處理試驗 36
四、栽培溫度組合試驗 38
五、添加物試驗 39
第五章 討論 (Disccusion) 42
一、浸種溫度及時間試驗 42
二、播種密度試驗 42
三、重物加壓栽培試驗 43
四、栽培溫度組合試驗 45
五、添加物處理 46
六、抗氧化物含量與抗氧化力 48
第六章 結論 (Conclusion) 49
參考文獻 (References) 50
dc.language.isozh-TW
dc.title高植化素綠豆(Vigna radiata (L.) Wilczek)芽菜
栽培之研究
zh_TW
dc.titleStudy on Cultivation of Mungbean (Vigna radiata (L.) Wilczek) Sprout with High Phytochemical Contenten
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雯如(Wen-Ju Yang),林淑怡(Shu-I Lin)
dc.subject.keyword可溶性蛋白質,可溶性糖,抗壞血酸,總酚類,總類黃酮,抗氧化力,zh_TW
dc.subject.keywordsoluble protein,soluble sugar,ascorbic acid,total phenolics,total flavonoids,antioxidant ability,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved