請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52228完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王奕翔(I-Hsiang Wang) | |
| dc.contributor.author | SHI-RONG LIU | en |
| dc.contributor.author | 劉士戎 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:09:54Z | - |
| dc.date.available | 2018-08-25 | |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | [1] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2014–2019,” white paper, 2015. [2] J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in Proc. IEEE International Workshop on Mobile Multimedia Commun. (MoMuC), San Diego, CA, Nov. 1999, pp. 3–10. [3] X. Wu, B. Murherjee, and D. Ghosal, “Hierarchical architectures in the third-generation cellular network,”IEEE Wireless Commun. Mag., vol. 11, no. 3, pp. 62–71, Jun. 2004. [4] T. S. Han, and K. Kobayashi. “A new achievable rate region for the Interference Channel,” IEEE Trans. Inform. Theory, vol. IT-27, no. 1, pp. 49–60, Jan. 1981. [5] R. H. Etkin, D. N. C. Tse, H. Wang, “Gaussian interference channel capacity to within one bit,” IEEE Trans. Inform. Theory, vol. 54, no. 12, pp. 5534–5562, Dec. 2008. [6] Small cell definition. Retrieved July 25, 2015, from http://hbswk.hbs. edu/item.jhtml?id=5049&t=globalization [7] M. Costa, “On Network Interference Management,” IEEE Trans. Inform. Theory, vol. 56, no. 10, Oct. 2010. [8] M. Costa, “Writing on dirty paper ,” IEEE Trans. Inform. Theory, vol. IT-29, no. 3, May. 1983. [9] A. E. Gamal and Y. H. Kim, “Network Information Theory,” Cambridge Univ. Press, 2011. [10] S.W. Jeon and C. Suh, “Degrees of Freedom of Uplink-Downlink Multiantenna Cellular Networks,” IEEE Inter. Symp. on Inform. theory, Apr. 2014. [11] H. P. Williams, “Fourier’s Method of Linear Programming and Its Dual,” The American Mathematical Monthly, Vol. 93, No. 9 , pp. 681-695, Nov., 1986. [12] C. E. Shannon, “Two-way communication channels,” in Proc. 4th Berkeley Symp. Math. Statist. Probab., vol. I, Berkeley, CA, 1961, pp. 611–644. [13] E. C. van der Muelen, “The discrete memoryless channel with two senders and one transmitter,” in Proc. IEEE Int. Symp. on Inf. Theory (ISIT), Tsahkadsor, Armenian SSR, 1971, pp. 103–135. [14] R. S. Cheng and S. Verdu, “Gaussian multiacccess channels with ISI: Capacity region and multiuser water-filling,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 773–785, May., 1993. [15] W. Yu and J. Cioffi, “Sum capacity of gaussian vector broadcast channels,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 1875–1892, Sep., 2004. [16] A. El Gamal and T. M. Cover, “Multiple user information theory,” Proc. IEEE, vol. 68, no. 12, pp. 1466–1483, Dec., 1980. [17] T. M. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 2–14, Jan. 1972. [18] P. P. Bergmans, “Random coding theorem for broadcast channels with degraded components,” IEEE Trans. Inf. Theory, vol. 19, no. 2, pp. 197–207, Mar. 1973. [19] R. G. Gallager, “Capacity and coding for degraded broadcast channels, ” Probl. Inf. Transm., vol. 10, no. 3, pp. 3–14, Mar. 1974. [20] G. Caire and S. Shamai, “On the achievable throughput in the multiple antenna Gaussian broadcast channel, ” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691– 1706, Jul. 2003. [21] W. Huang, X. Jia and Y. Zhang, “Interference Management and Traffic Adaptation of Femto Base Station based on TD-LTE, ” Inter. Journal of Comm. and Net., vol. 7, no.1, pp 217-224, 2014. [22] P. Viswanath and D. Tse, “Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality, ” IEEE Trans. Inf. Theory, vol. 49, no. 8, pp. 1912– 1921, Aug. 2003. [23] S. Viswanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels, ” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003. [24] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the Gaussian multiple-input multiple-output broadcast channel, ” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sep. 2006. [25] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of a channel with two senders and two receivers, ” Ann. Prob., vol. 2, pp. 805–814, Oct. 1974. [26] T. Han and K. Kobayashi, “A new achievable rate region for the interference channel, ” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49–60, Jan. 1981. [27] H. Sato, “The capacity of the Gaussian interference channel under strong interference, ” IEEE Trans. Inf. Theory, vol. 27, no. 6, pp. 786– 788, Jun. 1981. [28] V. S. Annapureddy and V. V. Veeravalli, “Gaussian interference networks: Sum capacity in the low interference regime and new outer bounds on the capacity region, ” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3032–3050, Jul. 2009. [29] G. Kramer, “Outer bounds on the capacity of Gaussian interference channels, ” IEEE Trans. Inf. Theory, vol. 50, no. 3, pp. 581–586, Mar. 2004. [30] R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity to within one bit, ” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534– 5562, Dec. 2008. [31] S. Karmakar and M. K. Varanasi, “The capacity region of the MIMO interference channel and its reciprocity to within a constant gap, ” IEEE Trans. Inf. Theory, vol. 49, no. 8, pp. 4781–4797, Aug. 2013. [32] A. Paulraj, D. Gore , R. Naber, and H. Bolcskei, “An overview of MIMO communication - a key to Gigabit wireless, ” in Proc. IEEE, vol. 92, no. 2, pp. 198–218, Feb. 2004. [33] I. Matic, “Inequalities with determinants of perturbed positive matrices, ”. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52228 | - |
| dc.description.abstract | 隨著智慧型手機普及,行動數據通訊的資料流量每年都以驚人
的倍數速度成長,人們對於無線通訊服務的需求量大增。因應暴 增的需求量,近期有研究機構提出異質性行動網路(heterogeneous cellular network) 架構來協助未來無線通訊的發展,並且被廣為重視與 探討。而透過佈建多個的小型基地台(small cells),能提供更良善的 行動通訊服務,這樣的網路架構稱為兩層式異質性行動網路(two-tier heterogeneous cellular network)。其中小型基地台共用與大型基地台 (macro cell) 相同的專屬執照頻段,能提供更好的頻譜效率,這樣的技 術稱為頻譜共享(sharing spectrum)。 在本論文中,將會針對運用頻譜分享技術的兩層式交錯雙工異質網 路作探討。其中交錯雙工模式(reverse duplex mode) 指的是大型基地台 與小型基地台彼此之間是交錯傳輸資訊,例如: 當大型基地台傳輸下行 (downlink) 的資訊時,而相反地小型基地台則是傳輸上行(uplink) 的資 訊,反之亦然。另外無線通信系統中使用的時分雙工/頻分雙工(TDD/ FDD) 皆能採用交錯傳輸,而稱為交錯式時分雙工/頻分雙工(reverse TDD/FDD)。根據消息理論(information theory) 分析,可將兩層式交錯 雙工異質網路架構視為干擾通道的模型。因此在本論文中主要提出一 項近似最佳化的干擾管理機制,其中干擾管理機制整合了交錯式模式 以及部分干擾消除策略(partial interference cancelling scheme) 或多層部 分干擾消除策略(multilevel partial interference cancelling scheme),並且 透過此干擾管理機制,驗證了在單邊干擾、一對多干擾以及多输入多 输出(Multi-input Multi-output) 三種通道模型下,可達到的整體速率具 有與系統容量相距固定間距的特性(within-constant-gap-to-capacity)。另 外,最值得一提的貢獻是本論文也提供了更有效率與低複雜運算量的 演算法,用以快速計算出整體可達到的傳輸速率範圍。 關鍵字:異質網路、交錯雙工模式、交錯式時分雙工/頻分雙工、 部分干擾消除策略、系統容量相距固定間距。 | zh_TW |
| dc.description.abstract | The requirement for wireless communications service has explosively grown
owing to the increasing number of mobile devices and mobile data traffic. To satisfy this requirement, heterogeneous cellular networks have been proposed and widely attracted attention both in cellular standards bodies as well as academic search. The idea that deploying multiple small cells with coexisting frequency in each of macro cells, forming called two-tier heterogeneous network, can increase overall throughput. The concept of coexisting frequency is spectrum sharing technique that also have been proposed to improve spectral efficiency. In this thesis, we will research the two-tier heterogeneous network (HetNet) with sharing spectrum in reverse duplex mode. That reverse duplex mode is that the direction of data transmission between macro and small cells is reverse, e.g., macro cell is in uplink mode, whereas small cells are in downlink mode, vice versa. Time/frequency division duplexing (TDD/FDD) can be implemented by above reverse duplex mode, called as reverse TDD/FDD. We can see this network as the interference channel model. We mainly propose an approximately optimal mechanism for interference management, which integrate reverse duplex mode and partial interference cancelling (PIC) scheme or multilevel partial interference cancelling (MPIC) scheme. In addition, we show its achievable overall sum-rate is characterized to within a constant-gapto- capacity property for all values of the channel parameters under one-side interference channel model, one-to-many interference channel model, and Multi-input Multi-output (MIMO) two-tier HetNet model. The other significant contribution we provided is on efficient and lowly complex computation of achievable sum-rate algorithm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:09:54Z (GMT). No. of bitstreams: 1 ntu-104-R02942109-1.pdf: 2617132 bytes, checksum: 57e393462e5128c87534c9626e0210cb (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要ii Abstract iii Contents iv List of Figures vi List of Tables viii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions and Open Research Directions . . . . . . . . . . . . . . . . 4 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Background 7 2.1 Information Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Multiple-Access Channel . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Broadcast Channel . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 Interference Channel . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Duplex Communication Links . . . . . . . . . . . . . . . . . . . . . . . 13 3 Approximate Capacity Region for One-Side Gaussian Interference Channel in Two-tier HetNet 17 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Achievable Rate Region for Sum Capacity . . . . . . . . . . . . . . . . 20 3.3.1 Coding and Decoding Scheme . . . . . . . . . . . . . . . . . . . 20 3.3.2 Complex Gaussian Interference Model . . . . . . . . . . . . . . 22 3.4 Outer Bounds for Sum Capacity . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Comparsion of Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Approximate Capacity Region for One-to-many Gaussian Interference Channel in Two-tier HetNet 29 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Achievable Rate Region for Sum Capacity . . . . . . . . . . . . . . . . . 33 4.3.1 Coding and Decoding Scheme . . . . . . . . . . . . . . . . . . . 33 4.3.2 Complex Gaussian Interference Model . . . . . . . . . . . . . . 35 4.4 Outer Bounds for Sum Capacity . . . . . . . . . . . . . . . . . . . . . . 38 4.5 Comparsion of Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Approximate Capacity Region for One-Side Gaussian Vector Interference Channel in Two-tier HetNet 43 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3 Achievable Rate Region for Sum Capacity . . . . . . . . . . . . . . . . 47 5.3.1 Coding and Decoding Scheme . . . . . . . . . . . . . . . . . . . 47 5.3.2 Complex Gaussian Vector Interference Model . . . . . . . . . . . 48 5.4 Outer Bounds for Sum Capacity . . . . . . . . . . . . . . . . . . . . . . 49 5.5 Comparsion of Regions and Extensions . . . . . . . . . . . . . . . . . . 50 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6 Conclusion 55 A PROOF OF THEOREM 1 57 B PROOF OF THEOREM 5 63 C PROOF OF THEOREM 8 67 D PROOF OF THEOREM 11 71 Bibliography 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 系統容量相距固定間距 | zh_TW |
| dc.subject | 異質網路 | zh_TW |
| dc.subject | 交錯雙工模式 | zh_TW |
| dc.subject | 交錯式時分雙工/頻分雙工 | zh_TW |
| dc.subject | 部分干擾消除策略 | zh_TW |
| dc.subject | multilevel partial interference cancelling scheme | en |
| dc.subject | small cell | en |
| dc.subject | two-tier heterogeneous cellular network | en |
| dc.subject | reverse duplex | en |
| dc.subject | within a constant-gap-to-capacity property | en |
| dc.subject | partial interference cancelling scheme | en |
| dc.title | 兩層式交錯雙工異質性行動網路之干擾管理控制 | zh_TW |
| dc.title | Interference Management in Two-Tier Heterogeneous Cellular
Network with Reverse Duplex | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林士駿(Shih-Chun Lin),黃昱智(Yu-Chih Huang) | |
| dc.subject.keyword | 異質網路,交錯雙工模式,交錯式時分雙工/頻分雙工,部分干擾消除策略,系統容量相距固定間距, | zh_TW |
| dc.subject.keyword | reverse duplex,partial interference cancelling scheme,multilevel partial interference cancelling scheme,small cell,two-tier heterogeneous cellular network,within a constant-gap-to-capacity property, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
