請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52222
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李永凌 | |
dc.contributor.author | Jui-Ju Tseng | en |
dc.contributor.author | 曾瑞如 | zh_TW |
dc.date.accessioned | 2021-06-15T16:09:47Z | - |
dc.date.available | 2015-09-14 | |
dc.date.copyright | 2015-09-14 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-19 | |
dc.identifier.citation | 1. Koppelman GH, te Meerman GJ, Postma DS. Genetic testing for asthma. The European respiratory journal 2008;32:775-82.
2. Silverstein MD, Mair JE, Katusic SK, Wollan PC, O'Connell E J, Yunginger JW. School attendance and school performance: a population-based study of children with asthma. The Journal of pediatrics 2001;139:278-83. 3. Spee-van der Wekke J, Meulmeester JF, Radder JJ, Verloove-Vanhorick SP. School absence and treatment in school children with respiratory symptoms in The Netherlands: data from the Child Health Monitoring System. Journal of epidemiology and community health 1998;52:359-63. 4. Weiss KB, Sullivan SD. Socio-economic burden of asthma, allergy, and other atopic illnesses. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology 1994;5:7-12. 5. Maziak W, Behrens T, Brasky TM, et al. Are asthma and allergies in children and adolescents increasing? Results from ISAAC phase I and phase III surveys in Munster, Germany. Allergy 2003;58:572-9. 6. Vercelli D. Genetics, epigenetics, and the environment: switching, buffering, releasing. The Journal of allergy and clinical immunology 2004;113:381-6; quiz 7. 7. Finkelman FD, Vercelli D. Advances in asthma, allergy mechanisms, and genetics in 2006. The Journal of allergy and clinical immunology 2007;120:544-50. 8. Flaherman V, Rutherford GW. A meta-analysis of the effect of high weight on asthma. Archives of disease in childhood 2006;91:334-9. 9. Tsai CH, Huang JH, Hwang BF, Lee YL. Household environmental tobacco smoke and risks of asthma, wheeze and bronchitic symptoms among children in Taiwan. Respiratory research 2010;11:11. 10. Tsai CH, Tung KY, Chen CH, Lee YL. Tumour necrosis factor G-308A polymorphism modifies the effect of home dampness on childhood asthma. Occupational and environmental medicine 2011;68:771-6. 11. Wang IJ, Tsai CH, Chen CH, Tung KY, Lee YL. Glutathione S-transferase, incense burning and asthma in children. The European respiratory journal 2011;37:1371-7. 12. Wang IJ, Tsai CH, Kuo NW, Chiang BL, Tung KY, Lee YL. Home dampness, beta-2 adrenergic receptor genetic polymorphisms, and asthma phenotypes in children. Environmental research 2012;118:72-8. 13. Tsai CH, Tung KY, Su MW, et al. Interleukin-13 genetic variants, household carpet use and childhood asthma. PloS one 2013;8:e51970. 14. Su MW, Tung KY, Liang PH, Tsai CH, Kuo NW, Lee YL. Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach. PloS one 2012;7:e30694. 15. Huffaker MF, Phipatanakul W. Utility of the Asthma Predictive Index in predicting childhood asthma and identifying disease-modifying interventions. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology 2014;112:188-90. 16. Fouzas S, Brand PL. Predicting persistence of asthma in preschool wheezers: crystal balls or muddy waters? Paediatric respiratory reviews 2013;14:46-52. 17. Castro-Rodriguez JA, Holberg CJ, Wright AL, Martinez FD. A clinical index to define risk of asthma in young children with recurrent wheezing. American journal of respiratory and critical care medicine 2000;162:1403-6. 18. Caudri D, Wijga A, CM AS, et al. Predicting the long-term prognosis of children with symptoms suggestive of asthma at preschool age. The Journal of allergy and clinical immunology 2009;124:903-10 e1-7. 19. Kurukulaaratchy RJ, Matthews S, Holgate ST, Arshad SH. Predicting persistent disease among children who wheeze during early life. The European respiratory journal 2003;22:767-71. 20. Pescatore AM, Dogaru CM, Duembgen L, et al. A simple asthma prediction tool for preschool children with wheeze or cough. The Journal of allergy and clinical immunology 2014;133:111-8 e1-13. 21. Holloway JW, Yang IA, Holgate ST. Genetics of allergic disease. The Journal of allergy and clinical immunology 2010;125:S81-94. 22. Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. The New England journal of medicine 2010;363:1211-21. 23. Spycher BD, Henderson J, Granell R, et al. Genome-wide prediction of childhood asthma and related phenotypes in a longitudinal birth cohort. The Journal of allergy and clinical immunology 2012;130:503-9 e7. 24. Joubert BR, Reif DM, Edwards SW, et al. Evaluation of genetic susceptibility to childhood allergy and asthma in an African American urban population. BMC medical genetics 2011;12:25. 25. Belsky DW, Sears MR, Hancox RJ, et al. Polygenic risk and the development and course of asthma: an analysis of data from a four-decade longitudinal study. The Lancet Respiratory medicine 2013;1:453-61. 26. Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. American journal of respiratory and critical care medicine 2007;175:661-6. 27. Shore SA. Obesity and asthma: possible mechanisms. The Journal of allergy and clinical immunology 2008;121:1087-93; quiz 94-5. 28. Litonjua AA, Gold DR. Asthma and obesity: common early-life influences in the inception of disease. The Journal of allergy and clinical immunology 2008;121:1075-84; quiz 85-6. 29. Melen E, Himes BE, Brehm JM, et al. Analyses of shared genetic factors between asthma and obesity in children. The Journal of allergy and clinical immunology 2010;126:631-7 e1-8. 30. Kuo NW, Tung KY, Tsai CH, Chen YC, Lee YL. beta3-Adrenergic receptor gene modifies the association between childhood obesity and asthma. The Journal of allergy and clinical immunology 2014;134:731-3 e3. 31. Ingram JL, Kraft M. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. The Journal of allergy and clinical immunology 2012;130:829-42; quiz 43-4. 32. Rael EL, Lockey RF. Interleukin-13 signaling and its role in asthma. The World Allergy Organization journal 2011;4:54-64. 33. Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation. The European respiratory journal 2000;16:534-54. 34. Lee YL, Lin YC, Lee YC, Wang JY, Hsiue TR, Guo YL. Glutathione S-transferase P1 gene polymorphism and air pollution as interactive risk factors for childhood asthma. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 2004;34:1707-13. 35. Salam MT, Lin PC, Avol EL, Gauderman WJ, Gilliland FD. Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax 2007;62:1050-7. 36. Tung KY, Tsai CH, Lee YL. Microsomal epoxide hydroxylase genotypes/diplotypes, traffic air pollution, and childhood asthma. Chest 2011;139:839-48. 37. Hwang BF, Young LH, Tsai CH, et al. Fine particle, ozone exposure, and asthma/wheezing: effect modification by glutathione S-transferase P1 polymorphisms. PloS one 2013;8:e52715. 38. Su MW, Tsai CH, Tung KY, et al. GSTP1 is a hub gene for gene-air pollution interactions on childhood asthma. Allergy 2013;68:1614-7. 39. McGeechan K, Macaskill P, Irwig L, Liew G, Wong TY. Assessing new biomarkers and predictive models for use in clinical practice: a clinician's guide. Archives of internal medicine 2008;168:2304-10. 40. Zou KH, O'Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 2007;115:654-7. 41. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine 2008;27:157-72; discussion 207-12. 42. Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Statistics in medicine 1990;9:1303-25. 43. Klaassen EM, van de Kant KD, Jobsis Q, et al. Exhaled biomarkers and gene expression at preschool age improve asthma prediction at 6 years of age. American journal of respiratory and critical care medicine 2015;191:201-7. 44. Swets JA. Measuring the accuracy of diagnostic systems. Science 1988;240:1285-93. 45. Ibrahim-Verbaas CA, Fornage M, Bis JC, et al. Predicting stroke through genetic risk functions: the CHARGE Risk Score Project. Stroke; a journal of cerebral circulation 2014;45:403-12. 46. Zheng W, Wen W, Gao YT, et al. Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women. Journal of the National Cancer Institute 2010;102:972-81. 47. Sullivan PF. Spurious genetic associations. Biological psychiatry 2007;61:1121-6. 48. Hopp RJ. Atopic characteristics of children with recurrent wheezing at high risk for development of childhood asthma. The Journal of allergy and clinical immunology 2005;116:930-1; author reply 1. 49. Guilbert TW, Morgan WJ, Zeiger RS, et al. Atopic characteristics of children with recurrent wheezing at high risk for the development of childhood asthma. The Journal of allergy and clinical immunology 2004;114:1282-7. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52222 | - |
dc.description.abstract | 背景:
氣喘是目前最常見的兒童慢性疾病,其受到許多的基因因素與環境因素的影響。雖然,許多基因變異已經被確認與氣喘發生及臨床表現極為相關,但是至今尚未有一個合併基因因素與臨床因素的危險評估模式來衡量疾病發生的可能性。 方法: 我們從3個台灣的世代研究(TCHSI,GBCA,與TCCAS)的個案中,分析8個與氣喘相關的基因,分析了10個單核甘酸多形性 (SNPs)。所有參與者的父母親都接受訪談,並完成與氣喘危險因子相關的問卷調查。利用改良式的氣喘預估指標(mAPI),以及由10 SNPs構成的基因危險分數(GRS)建構成一個預測模式,來評估與氣喘的相關性。利用模式區別能力(discrimination)與模式再分類能力(reclassification)的統計方法,以及模式校對法(calibration)來衡量預測模式的預測能力。再進行leave-one-out 交叉驗證法,驗證預測模式。 結果: 我們一共收集了640個氣喘兒童與1921對照組兒童。經由羅吉斯迴歸分析調整了年齡,性別,及身體質量指數(BMI)後,兩個環境因素,包括潮溼與牆壁受潮,與兒童氣喘有相關,這些因素被納入基本模式(baseline model)作分析。由基本模式合併改良式的氣喘預估指標(mAPI)與基因危險分數(GRS)組成綜合模式(combined model),其氣喘預測能力,比由基本模式合併改良式的氣喘預估指標(mAPI)組成的臨床模式,有較好的預測能力,可見到曲線下面積(AUC)由0.748增加到0.780 (p<0.0001)。同時也發現,綜合模式對疾病的區分能力(IDI: 0.022, p<0.0001)與再分類的能力(continuous NRI: 0.344, p<0.0001)也都達到統計學上的意義。考量兒童氣喘的危險機率為18%,綜合模式對氣喘的預測能力能達到78.8%的敏感性,59.4%的特異性,39.5%陽性預測值,與89.3%的陰性預測值。 結論: 我們成功的建構一個由基因因素與臨床因素構成的預測模式衡量兒童氣喘的危險評估模式。我們發現在臨床因子為主的預測模式加上基因危險分數(GRS)能有效的提升兒童氣喘發生率的預測能力。 | zh_TW |
dc.description.abstract | Background
Asthma is the single most common chronic childhood disease affected by multiple genetic and environmental factors. Although many genetic variants have been noted to be associated with childhood asthma, up to the present, no risk assessment models that incorporate genetic and clinical predictors for asthma occurrence are currently available. Methods We analyzed 10 single nucleotide polymorphisms (SNPs) identified from 8 asthma-associated genes among subjects who participated in three children’s cohort studies in Taiwan (TCHS, GBCA and TCCAS). The parents of all participants were interviewed regarding the information of asthma risk factors. Modified Asthma Predictive Index (mAPI) and genetic risk scores (GRSs) of 10 SNPs were used in prediction model assessment. The performance of prediction ability was assessed by discrimination and reclassification statistics, and calibration. Cross validation with leave-one-out cross validation method was also conducted. Results In total, 640 asthma cases and 1921 control subjects were included in current study. After controlling for age, sex and BMI, two environmental factors, moist and water damage of wall, were significantly associated with childhood asthma and all these covariates were incorporated into baseline model. The prediction ability of childhood asthma improved greatly in combined model composed of GRSs and mAPI compared with clinical model, demonstrating an increased AUC from 0.748 to 0.780 (p<0.0001). Besides, the improvement in discrimination (IDI: 0.022, p<0.0001) and reclassification (continuous NRI: 0.344, p<0.0001) also showed while comparing clinical model and combined model. Considering the 18% general risk of asthma in children, the combined model concluded sensitivity, specificity, positive predictive value, and negative predictive value as 78.8%, 59.4%, 39.5%, and 89.3%, respectively. Conclusion We have successfully constructed a prediction model composed of genetic and clinical factors in asthma risk assessment. Adding GRS into clinical factor-based prediction model would increase the prediction ability substantially in predicting the occurrence of childhood asthma. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:09:47Z (GMT). No. of bitstreams: 1 ntu-104-R02849018-1.pdf: 1048876 bytes, checksum: 5f934a69fd8eb16d9a81e584c73b9d4d (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝辭 ii
中文摘要 iii Abstract v Introduction 1 Literature review 3 Prediction of childhood asthma by clinical risk factors 3 Prediction of childhood asthma by genetic factors composing genetic risk scores 3 Research gap and research objective 5 Material and methods 6 Study population and case definition (figure 1) 6 Modified asthma predictive index (mAPI) (table 1) 7 Identifying asthma associated SNPs and selecting SNPs for inclusion in the risk score 7 DNA collection and genotyping 8 Constructing of genetic risk score (GRS) 9 Statistical analysis 9 Demographic characteristic 9 Model assessment 10 Results 16 Demographic data and risk factors associated with childhood asthma 16 The association of asthma-related SNPs and childhood asthma 17 The predictive model performance in diagnosis of childhood asthma 18 Discussion 20 Main finding 20 Relationship to other study of prediction model using genetic risk scores 22 mAPI application 23 Strengths and limitation 24 Clinical application 26 Conclusion 27 Reference 28 Figures 35 Tables 39 | |
dc.language.iso | en | |
dc.title | 遺傳與臨床因子預測台灣兒童氣喘之風險 | zh_TW |
dc.title | Genetic and Clinical Predictors for Asthma Risk Assessment among Children in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳秀熙,楊曜旭,陳暘卿 | |
dc.subject.keyword | 兒童氣喘,預測模式,基因危險分數, | zh_TW |
dc.subject.keyword | childhood asthma,prediction model,genetic risk score, | en |
dc.relation.page | 48 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-19 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。