請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52214
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊維元(Wei-Yuan Yang) | |
dc.contributor.author | Keng-Wei Tsai | en |
dc.contributor.author | 蔡耿維 | zh_TW |
dc.date.accessioned | 2021-06-15T16:09:40Z | - |
dc.date.available | 2018-08-28 | |
dc.date.copyright | 2015-08-28 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-19 | |
dc.identifier.citation | Baker, M. J., Tatsuta, T., & Langer, T. (2011). Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol, 3(7). doi: 10.1101/cshperspect.a007559
Cai, Q., Zakaria, H. M., Simone, A., & Sheng, Z. H. (2012). Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol, 22(6), 545-552. doi: 10.1016/j.cub.2012.02.005 Chan, D. C. (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet, 46, 265-287. doi: 10.1146/annurev-genet-110410-132529 Chen, H., & Chan, D. C. (2009). Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet, 18(R2), R169-176. doi: 10.1093/hmg/ddp326 Chen, Y., & Dorn, G. W., 2nd. (2013). PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science, 340(6131), 471-475. doi: 10.1126/science.1231031 Deas, E., Piipari, K., Machhada, A., Li, A., Gutierrez-del-Arroyo, A., Withers, D. J., . . . Abramov, A. Y. (2014). PINK1 deficiency in beta-cells increases basal insulin secretion and improves glucose tolerance in mice. Open Biol, 4, 140051. doi: 10.1098/rsob.140051 Dorn, G. W., 2nd. (2015). Mitochondrial dynamism and heart disease: changing shape and shaping change. EMBO Mol Med, 7(7), 865-877. doi: 10.15252/emmm.201404575 Fang, H., Chen, M., Ding, Y., Shang, W., Xu, J., Zhang, X., . . . Cheng, H. (2011). Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell Res, 21(9), 1295-1304. doi: 10.1038/cr.2011.81 Federico, A., Cardaioli, E., Da Pozzo, P., Formichi, P., Gallus, G. N., & Radi, E. (2012). Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci, 322(1-2), 254-262. doi: 10.1016/j.jns.2012.05.030 Gegg, M. E., Cooper, J. M., Chau, K. Y., Rojo, M., Schapira, A. H., & Taanman, J. W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet, 19(24), 4861-4870. doi: 10.1093/hmg/ddq419 Geisler, S., Holmstrom, K. M., Skujat, D., Fiesel, F. C., Rothfuss, O. C., Kahle, P. J., & Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12(2), 119-131. doi: 10.1038/ncb2012 Glauser, L., Sonnay, S., Stafa, K., & Moore, D. J. (2011). Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem, 118(4), 636-645. doi: 10.1111/j.1471-4159.2011.07318.x Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281(5381), 1309-1312. Grenier, K., McLelland, G. L., & Fon, E. A. (2013). Parkin- and PINK1-Dependent Mitophagy in Neurons: Will the Real Pathway Please Stand Up? Front Neurol, 4, 100. doi: 10.3389/fneur.2013.00100 Kaech, S., & Banker, G. (2006). Culturing hippocampal neurons. Nat Protoc, 1(5), 2406-2415. doi: 10.1038/nprot.2006.356 Kowluru, R. A., & Mishra, M. (2015). Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta. doi: 10.1016/j.bbadis.2015.08.001 Legros, F., Lombes, A., Frachon, P., & Rojo, M. (2002). Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell, 13(12), 4343-4354. doi: 10.1091/mbc.E02-06-0330 Li, H. M., Niki, T., Taira, T., Iguchi-Ariga, S. M., & Ariga, H. (2005). Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free Radic Res, 39(10), 1091-1099. doi: 10.1080/10715760500260348 Loson, O. C., Song, Z., Chen, H., & Chan, D. C. (2013). Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell, 24(5), 659-667. doi: 10.1091/mbc.E12-10-0721 Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C. A., . . . Tanaka, K. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol, 189(2), 211-221. doi: 10.1083/jcb.200910140 Matsumine, H. (1999). [A Parkin gene (PARK 2) and Parkinson's disease]. Rinsho Shinkeigaku, 39(1), 9-12. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochem J, 417(1), 1-13. doi: 10.1042/BJ20081386 Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183(5), 795-803. doi: 10.1083/jcb.200809125 Nguyen, T. T., Oh, S. S., Weaver, D., Lewandowska, A., Maxfield, D., Schuler, M. H., . . . Shaw, J. M. (2014). Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc Natl Acad Sci U S A, 111(35), E3631-3640. doi: 10.1073/pnas.1402449111 Ni, H. M., Williams, J. A., & Ding, W. X. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 4, 6-13. doi: 10.1016/j.redox.2014.11.006 Pareyson, D., Saveri, P., Sagnelli, A., & Piscosquito, G. (2015). Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett, 596, 66-77. doi: 10.1016/j.neulet.2015.04.001 Pekkurnaz, G., Trinidad, J. C., Wang, X., Kong, D., & Schwarz, T. L. (2014). Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell, 158(1), 54-68. doi: 10.1016/j.cell.2014.06.007 Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B., & Gelbard, H. A. (2011). Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques, 50(2), 98-115. doi: 10.2144/000113610 Rambold, A. S., Kostelecky, B., Elia, N., & Lippincott-Schwartz, J. (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A, 108(25), 10190-10195. doi: 10.1073/pnas.1107402108 Santo-Domingo, J., Giacomello, M., Poburko, D., Scorrano, L., & Demaurex, N. (2013). OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO J, 32(13), 1927-1940. doi: 10.1038/emboj.2013.124 Schon, E. A., & Manfredi, G. (2003). Neuronal degeneration and mitochondrial dysfunction. Journal of Clinical Investigation, 111(3), 303-312. doi: 10.1172/JCI200317741 Shen, E. Z., Song, C. Q., Lin, Y., Zhang, W. H., Su, P. F., Liu, W. Y., . . . Dong, M. Q. (2014). Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature, 508(7494), 128-132. doi: 10.1038/nature13012 Simon, H. U., Haj-Yehia, A., & Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5(5), 415-418. Sivitz, W. I., & Yorek, M. A. (2010). Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities. Antioxid Redox Signal, 12(4), 537-577. doi: 10.1089/ars.2009.2531 Sivitz, W. I., & Yorek, M. A. (2010). Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal, 12(4), 537-577. doi: 10.1089/ars.2009.2531 Sugiura, A., McLelland, G. L., Fon, E. A., & McBride, H. M. (2014). A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J, 33(19), 2142-2156. doi: 10.15252/embj.201488104 Van Laar, V. S., Arnold, B., Cassady, S. J., Chu, C. T., Burton, E. A., & Berman, S. B. (2011). Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet, 20(5), 927-940. doi: 10.1093/hmg/ddq531 Vevea, J. D., Wolken, D. M., Swayne, T. C., White, A. B., & Pon, L. A. (2013). Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells. J Vis Exp(77). doi: 10.3791/50633 Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y. L., Selkoe, D., . . . Schwarz, T. L. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 147(4), 893-906. doi: 10.1016/j.cell.2011.10.018 Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 11(12), 872-884. doi: 10.1038/nrm3013 Westermann, B. (2012). Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta, 1817(10), 1833-1838. doi: 10.1016/j.bbabio.2012.02.033 Willems, P. H., Rossignol, R., Dieteren, C. E., Murphy, M. P., & Koopman, W. J. (2015). Redox Homeostasis and Mitochondrial Dynamics. Cell Metab, 22(2), 207-218. doi: 10.1016/j.cmet.2015.06.006 Yang, J., Wang, T., Zhang, Y., Li, R., Wang, S., Xu, H., . . . Ye, Z. (2014). Altered expression of mitofusin 2 in penile tissues of diabetic rats. Andrologia, 46(5), 522-528. doi: 10.1111/and.12108 Yang, J. Y., & Yang, W. Y. (2011). Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy, 7(10), 1230-1238. doi: 10.4161/auto.7.10.16626 Yang, J. Y., & Yang, W. Y. (2013). Bit-by-bit autophagic removal of parkin-labelled mitochondria. Nat Commun, 4, 2428. doi: 10.1038/ncomms3428 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52214 | - |
dc.description.abstract | 粒線體在細胞中同時扮演能量供給與調控細胞凋亡的角色,其內膜上的電子傳遞鏈促使內膜兩側形成氫離子之濃度差並藉此推動三磷酸腺苷(ATP)合成酶合成ATP維持細胞能量供給。然而電子自傳遞鏈洩漏所產生的活性氧化物質(ROS)則會對細胞內的各種組成造成傷害,受損的粒線體更會進一步產生更多的ROS。當粒線體的品質失去控制時會導致許多不同類型的疾病,在遺傳早發性帕金森氏症中發現並命名為Parkin的E3泛素連接脢揭開了細胞如何控制受損粒線體被細胞自噬來清除的機制,又稱為粒線體自噬。為了控制粒線體的品質與效率,因應不同的環境或細胞狀態,細胞能藉由融合、分裂、移動來改變粒線體的形狀、大小與分佈,稱為粒線體動態。粒線體的動態失去控制的其中一個例子是造成胰島細胞無法受外在葡萄糖濃度的刺激進而產生胰島素,甚至會造成胰島細胞死亡而形成糖尿病。先前的研究指出粒線體自噬大多是利用氫離子去耦合劑來破壞粒線體內的膜電位來產生,然而此時細胞中所有的粒線體都已經受到傷害,與正常情況下單一粒線體的破壞的情形不論在細胞的能量供給或整體粒線體動態都不盡相同。在我們設計的實驗中,利用只能夠在特定波長雷射激發時才會釋放氧化壓力的重組蛋白表現到粒線體中,並追蹤受損的粒線體與其他健康粒線體的互動,發現當受損的粒線體與周遭的健康粒線體融合後再度恢復其膜電位,其氧化壓力也沒有繼續提升,相比於沒有融合的粒線體,這些粒線體逃過了被細胞自噬的命運。更進一步我們藉由抑制與粒線體移動相關的蛋白質(TRAK1)的表現,當粒線體的移動被抑制時,受損粒線體與健康粒線體融合的機會降低,此時粒線體被細胞自噬系統辨認的比例提高,顯示出細胞動態跟細胞自噬之間存在交互影響,同時我們也將這樣的實驗設計應用於神經細胞跟胰島細胞中,希望能進一步研究當細胞面臨來自內或外的環境改變時,如何調整其控制粒線體品質的策略。 | zh_TW |
dc.description.abstract | Mitochondria play crucial roles in metabolic and apoptotic pathway within the cell. Dysfunction of mitochondria has been implicated in the pathogenesis of many neurodegenerative diseases. To ensure mitochondrial quality, cells can degrade aged and damaged mitochondria through PINK1/Parkin-mediated mitophagy. Defects in ubiquitin ligase Parkin are linked to early-onset cases of Parkinson's disease. On the other side, cell control mitochondria shape and distribution by fusion, fission and motility of mitochondria to face external or enteral cell stresses. However, the coordination of mitophagy and mitochondrial dynamic still unclear because most study of mitophagy impairs mitochondria through proton uncoupler such as CCCP (Carbonyl cyanide m-chlorophenyl hydrazone). In response to CCCP's attack, the potential of restore mitochondrial function by fusion with healthy mitochondria has been blocked. Because entire mitochondrial network has been depolarized and fragmented. Here we used a protein-based photosensitizer Killer-Red to damage selected mitochondria and traced their fate with PAGFP, a photoactivatable fluorescent protein. We found that fusion with nearby mitochondrial network can promote the recovery of a damaged mitochondrion’s function and escape from the fate of mitophagy. Inhibition of mitochondrial motility by knockdown mitochondrial motor-adaptor protein TRAK1 lead to increase the ratio of mitophagy in KillerRed damage mitochondria but didn’t shift mitophagy activity in CCCP-induced entire cell damaging. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:09:40Z (GMT). No. of bitstreams: 1 ntu-104-R01b46013-1.pdf: 9264844 bytes, checksum: 27499383a71b1ba732bc78aaefd5f7a7 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員審定書(i)
誌謝(ii) 摘要(iii) Abstract(v) Contents(vii) Figure contents(ix) i. Introduction(1) i-a. Reactive oxygen species and mitochondrial quality control.(1) i-b. Mitochondrial dynamics and cellular homeostasis.(2) i-c. Optogenetically induce and trace mitochondrial damage in living cell.(3) ii.Materials and methods(5) ii-a. Plasmids and siRNAs.(5) ii-b. Cell culture, transfection and reagent usage.(5) ii-c. Live-cell manipulation and imaging.(6) ii-d Fluorescence image of analysis(7) ii-e. Western blotting(7) iii. Results(9) iii-a. Parkin-mediated mitophagy within single mitochondrion.(9) iii-b. Fusion between healthy and damaged mitochondria lead to recovery of mitochondrial membrane potential.(10) iii-c. Fusion with healthy mitochondria have balance the redox state of damaged mitochondria.(11) iii-d. The relationship of parkin and mitochondrial material exchanging.(11) iii-e. Inhibition of mitochondrial motility did not alter the fate of damaged mitochondria in CCCP mitochondrial damaging but increase the chance of mitophagy in site specifics damaging.(12) iii-g. Mitophagy induced by KillerRed in neuron.(13) iii-h. Mitophagy induced by KillerRed in beta cells.(14) iv. Discussion(15) vi. Figures(18) v. References(35) | |
dc.language.iso | en | |
dc.title | 粒線體自噬與融合修復機制之交互作用 | zh_TW |
dc.title | Study of Reciprocal Interactions between Mitophagy and Fusion-based Recovery of Mitochondrial Membrane Potential | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳光超(Guang-Chao Chen),姚季光(Chi-Kuang Yao) | |
dc.subject.keyword | 粒線體,細胞自噬,Parkin蛋白,粒線體融合分裂與移動,TRAK1蛋白,氧化壓力, | zh_TW |
dc.subject.keyword | Mitochondria,Mitophagy,Parkin,Mitochondrial fusion,Mitochondrial dynamic,TRAK1,Oxidative stress, | en |
dc.relation.page | 38 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-19 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 9.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。