Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱有田
dc.contributor.authorPei-Yu Sunen
dc.contributor.author孫佩妤zh_TW
dc.date.accessioned2021-06-15T16:09:36Z-
dc.date.available2025-08-20
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation朱傚祖(2003)南湖大山冰川遺跡。地質22 (2): 15-22。
朱傚祖(2009)南湖大山冰川地形及冰川遺跡。地質28(2): 56-59。
朱傚祖、林俊全、梁勝雄(2015)臺灣高山殘存冰川地形的科學證據-以南湖大山為例。自然科學簡訊27(2): 48-55。
呂光洋(1989)關山區哺乳類調查及長鬃山羊棲息環境之評估。內政部營建署玉山國家公園管理處。計畫編號1013。
呂光洋、黃郁文(1988)臺灣長鬃山羊之生態學研究。行政院農業委員會77年生態研究第014號。
林彥博(2009)臺灣產黑蒙西式小雨蛙族群遺傳結構與親緣地理學研究。國立臺灣師範大學生命科學系研究所碩士論文。
洪東奇、黃獻文、梁佑全、歐柏榮(2003)臺灣長鬃山羊族群具有顯著遺傳變異之兩個分群以粒線體DNA之D-loop序列比對。特有生物研究5: 15-25。
洪東奇、賴淑雅、黃獻文、梁佑全、歐柏榮(2001)臺灣長鬃山羊個體間粒線體DNA之12S rRNA 及cytochrome b序列分析比較。特有生物研究3: 37-48。
徐秀敏(2002)以粒線體核酸分析探討台灣長鬃山羊之親緣關係與生物地理。國立中山大學生物科學系研究所碩士論文。
張訓誠(2002)以粒線體核酸序列與頭骨型態分析長鬃山羊屬之親緣關係與生物地理。國立中山大學生物科學系研究所碩士論文。
陳兼善、于名振(1991)臺灣脊椎動物誌(下冊)。臺灣商務印書館。
陳顧淋(2003)最小成本路徑分析在生態廊道分析的利用—以太魯閣與雪霸國家公園間為例。國立東華大學自然資源管理研究所碩士論文。
游顯光(2014)長鬃山羊感染穿孔疥癬蟎與否的棲地利用及活動模式之比較。國立屏東科技大學野生動物保育研究所碩士論文。10頁。
黃美秀(2007)玉山國家公園楠溪林道較大型哺乳動物之監測。臺灣林業科學 22: 135-47。
楊建夫(2001)台灣的山脈。遠足文化出版社。
楊建夫、崔之久、王鑫、宋國城(1999)臺灣高山冰川地形爭議的新發現。地質19(2): 16-20。
裴家騏、姜博仁(2002)大武山自然保留區和周邊地區雲豹及其他中大型哺乳動物之現況與保育研究(三)。行政院農業委員會林務局保育研究系列92-02號。
齊士崢(1998)野外劄記—南湖大山的冰川地形。環境與世界2: 161-163。
劉平妹(2003)乾濕冷暖孢粉知道。科學發展月刊 369: 18-23。
賴玉菁(2005)利用地理資訊系統建構六龜試驗林扇平地區中大型哺乳動物巨棲環境棲地模式。中華林學季刊38(4): 465-476。
錢憶涵(2013)臺灣長鬃山羊的親緣關係與族群遺傳結構分析。國立屏東科技大學野生動物保育研究所碩士論文。
戴興盛、莊武龍、林祥偉(2011)。原住民於何處狩獵?東台灣太魯閣族某村落之實證研究。地理學報69: 42 -59。
鍾玉龍、陳朝圳、呂明倫(2005)地景異質性演變之研究—以南仁山生態保護區為例。特有生物研究7(2): 51-61。
羅英元、陳世煌(2010)。台灣地區溪狡蛛(蜘蛛目:跑蛛科)族群遺傳結構及親緣地理關係之探討。生物學報45(2): 101-110。
Aoki, B.(1913)A hand-list of Japanese and Formosan mammals. Annotationes Zoologicae Japonenses. 8: 261-353.
Arif, I. A., H. A. Khan, A. H. Bahkali, A. A. Al Homaidan, A. H. Al Farhan, M. Al Sadoon, and M. Shobrak(2011)DNA marker technology for wildlife conservation. Saudi Journal of Biological Sciences 18: 219-225.
Avise, J. C.(1994)Molecular Markers, Natural History and Evolution, 2nd edition. New York: Chapman & Hall.
Avise, J. C.(2000)Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts.
Bandelt, H. J., P. Forster, and A. Röhl(1999)Median-Joining Networks for Inferring Intraspecific Phylogenies. Molecular Biology and Evolution 16: 37-48.
Brown, W. M., M. George, Jr., and A. C. Wilson(1979)Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences USA 76: 1967-1971.
Byrne, M.(2008)Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews 27: 2576-2585.
Cann, P. L., W. M. Brown, and A. C. Wilson(1984)Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106: 479-499.
Cheng, Y. P., S. Y. Hwang, and T. P. Lin(2005)Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Molecular Ecology 14: 2075-2085.
Drummond, A. J. and A. Rambaut(2007)BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut(2012)Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29(8): 1969-1973.
Excoffier, L. and H. E. L. Lischer(2010)Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3): 564-567.
Fu , Y. X.(1997)Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925.
Galbreath, K. E., D. J. Hafner, and K. R. Zamudio(2009)When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American Pika, Ochotona Princeps). Evolution 63: 2848-2863.
Gibbard, P., T. V. Kolfschoten, P. Gibbard, and T. V. Kolfschoten(2005) The Pleistocene and Holocene Epochs. A Geologic Time Scale 2004. Cambridge University Press 441-452.
Grant, W. S. and B. W. Bowen(1998)Shallow Population Histories in Deep Evolutionary Lineages of Marine Fishes: Insights From Sardines and Anchovies and Lessons for Conservation. The American Genetic Association 89:415-426.
Groves, C. P. and P. Grubb(1985)Reclassification of the serows and gorals (Nemorhaedus: Bovidae). In The Biology and Management of Mountain Ungulates, S. Lovari, ed., Croom Helm, London, pp. 45‐50.
Groves, P. and G. F. Shields(1996)Phylogenetics of the Caprinae based on cytochrome b sequence. Molecular Phylogenetics and Evolution 5: 467-476.
Groves, C. P. and P. Grubb(2011)Ungulate Taxonomy. Johns Hopkins University Press.
Harpending, H. C.(1994)Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66(4): 591-600.
Hillis, D. and J. Bull(1993)An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182-192.
Hsu, F. H., F. J. Lin, and Y. S. Lin(2001)Phylogeographic structure of the Formosan Wood Mouse, Apodemus semotus Thomas. Zoological Studies 40: 91-102.
Huang, S. S. F., S. Y. Hwang, and T. P. Lin(2002)Spatial pattern of chloroplast DNA variation of Cyclobalanopsis glauca in Taiwan and east Asia. Molecular Ecology 11: 2349-2358.
Hsu, F. H., F. J. Lin, and Y. S. Lin(2001)Phylogeographic structure of the Formosan wood mouse, Apodemus semotus Thomas. Zoological Studies 40: 91-102.
Jang-Liaw N. H., T. H. Lee, and W. H. Chou(2008)Phylogeography of Sylvirana latouchii (Anura, Ranidae) in Taiwan. Zoological Science 25: 68-79.
Jensen, J. L., A. J. Bohonak, and S. T. Kelley(2005)Isolation by distance, web service. BMC Genetics 6: 13.
Kimura, M.(1980)A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
Kimura, M.(1983)The Neutral Theory of Molecular Evolution. Cambridge University Press.
Kuo, H. C., S. F. Chen, Y. P. Fang, J. Flanders, and S. J. Rossiter(2014)Comparative rangewide phylogeography of four endemic Taiwanese bat species. Molecular Ecology 23: 3566-3586.
Liew, P. M., C. M. Kuo, S. Y. Huang, and M. H. Tseng(1998)Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan. Global and Planetary Change 16-17: 85-94.
Liew, P. M., C. Y. Lee, and C. M. Kuo(2006)Holocene thermal optimum and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan. Earth and Planetary Science Letters 250: 596-605.
Lin, H. D., Y. R. Chen, and S. M. Lin(2012)Strict consistency between genetic and topographic landscapes of the brown tree frog (Buergeria robusta) in Taiwan. Molecular Phylogenetics and Evolution 62: 251-262.
Liu, W., Y. F. Yao, Q. Yu, Q. Y. Ni, M. W. Zhang, J. D. Yang, M. M. Mai, and H. L. Xu(2013)Genetic variation and phylogenetic relationship between three serow species of the genus Capricornis based on the complete mitochondrial DNA control region sequences. Molecular Biology Reports 40: 6793-6802.
Loftus, R. T., D. E. MacHugh, D. G. Bradley, P. M. Sharp, and P. Cunningham(1994)Evidence for two independent domestications of cattle. Proceedings of the National Academy of Sciences 91: 2757-2761.
Marín, J. C., V. Varas, A. R. Vila, R. López, P. Orozco-ter Wengel, and P. Corti(2013)Refugia in Patagonian fjords and the eastern Andes during the Last Glacial Maximum revealed by huemul (Hippocamelus bisulcus) phylogeographical patterns and genetic diversity. Journal of Biogeography 40: 2285-2298.
Moncrief, N. D., J. B. Lack, J. E. Maldonado, K. L. Bryant, C. W. Edwards, and R. A. Van Den Bussche(2012)General lack of phylogeographic structure in two sympatric, forest obligate squirrels (Sciurus niger and S. carolinensis). Journal of Mammal 93: 1247-1264.
Nei, M. and W. H. Li(1979)Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy Sciences 76: 5269-5273.
Nei, M.(1987)Molecular evolutionary genetics. New York: Colombia University Press.
Oshida, T., J. K. Lee, L. K. Lin, and Y. J. Chen(2006)Phylogeography of Palla’s squirrel in Taiwan: geographical isolation in an arboreal small mammal. Journal of Mammalogy 87: 247-254.
Oshida, T., L. K. Lin, S. W. Chang, Y. J. Chen, and J. K. Lin(2011)Phylogeography of two sympatric giant flying squirrel subspecies, Petaurista alborufus lena and P. philippensis grandis (Rodentia: Sciuridae), in Taiwan. Biological Journal of the Linnean Society 102: 404-419.
Posada, D.(2008)jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256.
Rambaut A.(2009)FigTree v1.2.3. Institute of Evolutionary Biology, University of Edinburgh.
Rogers, A. R. and H. Harpending(1992)Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552-569.
Saunders, M. A., and S. V. Edwards(2000)Dynamics and phylogenetic implications of MtDNA control region sequences in New World jays (Aves: Corvidae). Journal of Molecular Evolution 51: 97-109.
Shih, H. T., H. C. Hung, C. D. Schubart, C. L. A. Chen, and H. W. Chang(2006)Intraspecific genetic diversity of the endemic freshwater crab Candidiopotamon rathbunae (Decapoda, Brachyura, Potamidae) reflects five million years of the geological history of Taiwan. Journal of Biogeography 33: 980-989.
Soma, H., H. Kada, and K. Matoyoshi(1987)Evolutionary pathways of karyotypes of the tribe Rupicaprini. The Biology and Management of Capricornis and Related Mountain Antelopes, H. Soma, ed., Croom Helm, London, pp.62-71.
Tajima, F.(1989)Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar(2013)MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
Wilson, D. E. and D. M. Reeder(2005)Mammal Species of the World (Third Edition). Smithsonian Institution Press, Washington, DC.
Wright, S.(1943)Isolation by distance. Genetics 28: 114-138.
Yu, H. T(1995)Patterns of diversification and genetic population structure of small mammals in Taiwan. Biological Journal of the Linnean Society 55: 69-89.
Yu, T. L., H. D. Lin, and C. F. Weng(2014)A New Phylogeographic Pattern of Endemic Bufo bankorensis in Taiwan Island Is Attributed to the Genetic Variation of Populations. PLoS ONE 9(5): e98029.
Yuan, S. L., L. K. Lin, and T. Oshida(2006)Phylogeography of the mole-shrew (Anourosorex yamashinai) in Taiwan: implications of interglacial refugia in a high-elevation small mammal. Molecular Ecology 15: 2119-2130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52210-
dc.description.abstract親緣地理學為探討生物族群之遺傳與地理結構的學科,透過親緣地理分析將生物現今的系譜資訊結合地理分布,能夠進一步推論生物過去所受到如氣候變遷影響其分布的演化歷史。臺灣是高山型島嶼,擁有約三分之一面積為海拔1,000 m以上的高山地形,並且已證實多處山區過去曾經歷冰河期。如此崎嶇的地形與劇烈的氣候變化是否會對臺灣高海拔大型哺乳類動物的族群遺傳結構造成影響,尚有待研究。臺灣長鬃山羊(Capricornis swinhoei)為臺灣唯一野生的牛科動物,且為珍貴保育的臺灣特有種,廣泛分布於臺灣各地山區。由於臺灣長鬃山羊之親緣地理分析研究尚不完整,本研究以粒線體DNA D-loop序列作為分子遺傳標記欲探討其遺傳多樣性、親緣關係、族群數量波動及族群遺傳結構。
本研究從全臺灣36個採樣點、342個樣本中成功定序得342條D-loop序列全長(1,122-1,125 bp),並從中獲得126個基因單套型。以單套型重建親緣關係樹結果顯示有100的支持度將臺灣長鬃山羊分為兩個主要類群,分別分布於太魯閣與雪霸山區、以及臺灣全島山區,依其分布將之命為太魯閣雪霸主要類群及臺灣主要類群。兩大主要類群在12.5至13.4萬年前分岐,大約落在里斯冰河期。根據AMOVA分析結果顯示臺灣長鬃山羊的遺傳結構在奇萊山區與丹大之間、玉山國家公園以東南存在顯著的遺傳分化(ΦCT = 0.26525; P < 0.001),並且與地理距離顯著相關(r = 0.6690; P < 0.001)。依據中性檢測、核苷酸變異分布、貝氏天際線圖分析結果顯示,約在沃姆冰河期結束時臺灣主要類群曾經歷族群擴張的事件。總結分析結果,地理距離為造成臺灣長鬃山羊基因交流的阻礙可能因素之一,此外過去所經歷之多次冰河週期帶來的氣候變遷亦為造就現今遺傳結構的重要因子。此篇研究提供臺灣長鬃山羊及其他臺灣高海拔生物的親緣地理研究的參考資訊。
zh_TW
dc.description.abstractPhylogeography is the study of the genetic and geographic structure of populations and species. Phylogeographic analysis provides an insight into historical factors, such as climate change, by examining current patterns of genealogy and geographic distribution. Taiwan is a mountainous island, which contains one third area of mountains that are up to 1,000 meters of elevations and has experienced several glacial cycles. Whether the geological history and the past glacial periods affected the alpine large mammals’ genetic population structures and diversities in Taiwan hasn’t been extensively studied.
Formosan serow(Capricornis swinhoei)is the only endemic wild bovidae animal that protected by law in Taiwan, and widely distributed in the mountainous regions(400-3,952 m elevation)throughout the island. Due to lacking of phylogeographic studies, the phylogeographic relationships and historical demography of Formosan serow remains unclear. In this study, we examined the mitochondria DNA D-loop regions (1) to assess the genetic diversity and phylogenetic relationship, (2) to investigate the differentiation and phylogeographic relationships, and (3) to infer the historical evolutionary processes of Formosan serow in Taiwan.
In total, 342 samples(feces, blood and tissue)collected from 36 localities throughout Taiwan was examined. We obtained 126 haplotypes from D-loop region(1,122-1,125 bp). Two major clades with 100% supported bootstrap values were identified in D-loop sequences analysis. Furthermore, the two major clades were defined as Taroko and Sheipa major clade and Taiwan major clade because they were mainly distributed to the Taroko and Sheipa Mountain Area, and the entire mountainous area of Taiwan, respectively. The divergence time between these two phylogroups were examined at approximately 0.125 to 0.134 mya(million years ago)during Riss glaciation(0.2-0.13 mya). According to AMOVA and mantel test, the Formosan serow population can be divided into three genetic units that existed significant genetic differentiation correlated to geographical distances(ΦCT = 0.26525; P < 0.001)(r = 0.6690; P < 0.001). Mismatch distribution analysis, Neutrality tests and Bayesian skyline plots revealed that a significant population expansion occurred for the population of Taiwan major clade, with horizons dated to approximately 0.02 mya during the end of Würm glaciation(0.11-0.012 mya).
In conclusion, the geographical distance with restriction of gene flow was one of the factors that shaped current genetic differentiation and variant geographical distribution of haplotypes. In addition, past climate change caused by multiple glacial periods also played an important role in shaping the current phylogeographic structure. This study will provide usefully information for further phylogeographic study of Formosan serow, and other alpine species in Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:09:36Z (GMT). No. of bitstreams: 1
ntu-104-R02626004-1.pdf: 2557198 bytes, checksum: 6e81594f2a428a6f3a7ed6e318ae3bdf (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract III
圖表目錄 VII
壹、前言 1
貳、文獻回顧 3
一、親緣地理學 3
二、粒線體DNA分子遺傳標記 3
三、臺灣地質事件與地形 4
(一)臺灣歷經的冰河時期 4
(二)高山地形造成地理區隔 4
四、GPS與GIS在生物親緣地理關係之利用 5
五、臺灣長鬃山羊 5
(一)分類地位 5
(二)特徵與習性 6
(三)棲地選擇與活動範圍 6
(四)近年遺傳研究 7
參、材料與方法 8
一、樣本採集及保存 8
二、樣本DNA之萃取. 9
(一)排遺樣本DNA之萃取 9
(二)組織樣本DNA之萃取 9
三、粒線體DNA D-loop全長序列之擴增及定序 10
(一)以聚合酶連鎖反應擴增D-loop全長序列 10
(二)D-loop全長序列之純化與定序 11
四、粒線體DNA D-loop全長序列之整理及比對 12
五、粒線體DNA D-loop全長序列之分析 12
(一)遺傳多樣性分析 12
(二)親緣關係重建 13
(三)族群歷史變動分析 14
(四)族群遺傳結構分析 15
肆、結果 17
一、序列變異及遺傳多樣性分析 17
二、臺灣長鬃山羊之親緣關係分析 18
(一)親緣關係樹 18
(二)分歧時間與共祖時間 19
(三)網狀圖 19
三、臺灣長鬃山羊之族群歷史波動分析 20
(一)中性檢測 20
(二)核苷酸變異分布分析 21
(三)貝氏天際線圖 21
四、臺灣長鬃山羊之族群遺傳結構分析 21
伍、討論 23
一、臺灣長鬃山羊之遺傳多樣性與親緣關係 22
二、臺灣長鬃山羊歷史族群數量波動 24
三、臺灣長鬃山羊之族群基因交流與分化 25
四、臺灣長鬃山羊D-loop遺傳演化歷程之假設 26
陸、結論 28
柒、參考文獻 29
表與圖 37
附錄 57
dc.language.isozh-TW
dc.subject臺灣長鬃山羊zh_TW
dc.subject粒線體分子標記zh_TW
dc.subject遺傳分化zh_TW
dc.subject族群遺傳zh_TW
dc.subject親緣地理關係zh_TW
dc.subjectpopulation genetic structureen
dc.subjectmitochondria DNA markeren
dc.subjectgenetic differentiationen
dc.subjectphylogeographic relationshipen
dc.subjectCapricornis swinhoeien
dc.title利用粒線體D-loop序列探討臺灣長鬃山羊親緣地理關係與歷史族群波動zh_TW
dc.titlePhylogeographic relationships and historical demography of Formosan serow based on mitochondrial D-loop sequencesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee裴家騏,林思民,賴玉菁,張仕緯
dc.subject.keyword臺灣長鬃山羊,族群遺傳,遺傳分化,粒線體分子標記,親緣地理關係,zh_TW
dc.subject.keywordCapricornis swinhoei,population genetic structure,genetic differentiation,mitochondria DNA marker,phylogeographic relationship,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved