請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52205
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王富正(Fu-Cheng Wang) | |
dc.contributor.author | Chuan-Yu Chen | en |
dc.contributor.author | 陳佑顓 | zh_TW |
dc.date.accessioned | 2021-06-15T16:09:31Z | - |
dc.date.available | 2017-08-25 | |
dc.date.copyright | 2015-08-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-19 | |
dc.identifier.citation | [1] WIKI百科, 台灣921大地震。
[2] WIKI 百科, 阪神大地震。 [3] 蔡益超,詹添全, 2005, 建築物隔震設計與施工, 財團法人中華建築中心出版 [4] 内政部, 建築管理組, 台內營字第 0990810250號函, 2011年1月19日, 建築物耐震設計規範及解說, 2018年7月1日施行生效。 [5] 張國鎮,建築物隔震設計規範簡介,國立台灣大學土木系,國家地震工程研究中心 [6] 國家地震研究中心, 建築物隔震器。 [7] 國家地震研究中心, 建築物隔震器測試。 [8] M.C. Smith.“ Synthesis of mechanical networks: the inerter”,IEEE Transactions on Automatic Control, Vol. 47, No.10, pp. 1648-1662, Oct., 2002 [9] M.C. Smith and F.C. Wang,“Performance benefits in passive vehicle suspensions employing inerters”, Vehicle System Dynamics, Vol. 42, No. 4, pp. 235-257, 2004 [10] F. C. Wang, S. Y. Wu,“Vibration control of an optical table employing mechatronic inerter networks”, Journal of vibration and control, DOI: 10.1177 / 1077546314528365, 2014. [11] F. C. Wang, M. F. Hong, C. W. Chen, “Building suspensions with inerters”, Journal of Mechanical Engineering Science, vol. 224 ,no. 8, pp. 1605–1616. 2010. [12] Y.L. Xu, Q. He, J.M. Ko,“Dynamic response of damper-connected adjacent buildings under earthquake excitation”, Engineering Structure, vol. 21, no. 2, pp. 135-148, 1999. [13] C. Papageorgiou, and M. C. Smith,“Positive real synthesis using matrix inequalities for mechanical networks: application to vehicle suspension”, IEEE Trans. Control Syst. Technol., vol. 13, no. 3, pp. 423–435, 2006. [14] J. Z. Jiang, and M. C. Smith,“Regular positive-real function and five-element network synthesis for electrical and mechanical networks”, IEEE Trans. Automatic Control, vol. 56, no. 6, pp. 1275–1290, 2011. [15] F. C. Wang, M. K. Liao, B. H. Liao, W. J. Su, and H. A. Chan,“The performance improvements of train suspension systems with mechanical networks employing inerters”, Veh. Syst. Dyn., Vol. 47, No. 7, pp. 805-830, 2009. [16] R. A. Waller, Building on Springs. Pergamon Press,1969 [17] F. Naeim, J.M. Kelly, “Design of seismic isolated structures”, 1999. [18] J.M. Kelly, “A seismic base isolation: review and bibliography”, Soil Dynamics and Earthquake Engineering, Vol. 5, No. 3, 1986, pp. 202-216. [19] J.M. Kelly, “Base Isolation : Linear theory and Design”, Earthquake Spectra, No.2, 1990, pp.223-244. [20] W.H. Robinson,“Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes”, Earthquake Engineering & Structural Dynamics, Vol. 10, Issue. 4, pp. 593-604. [21] R. L. Mayes , A. G. Brown and D. Pietra,“Using seismic isolation and energy dissipation to create earthquake-resilient buildings”, Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 45, No. 3, pp. 117-122, September 2012. [22] B. Westermo and F. Udwadia,“Periodic response of a sliding oscillator system to harmonic excitation”, Earthquake Engineering & Structural Dynamics, Vol. 11, pp. 135-146 , 1983. [23] J. P. Talbot,“On the Performance of Base-Isolated Buildings: A Generic Model”, University of Cambridge for the degree of Doctor of Philosophy, November 2001. [24] A. Y. Tuan and G. Q. Shang,“Vibration Control in a 101-Storey Building Using a Tuned Mass Damper”, Journal of Applied Science and Engineering”, Vol. 17, No. 2, pp. 141-156 , 2014. [25] F. Hejazi, A. Zabihi, M. S. Jaafar,“Development of elasto-plastic viscous damper finite element model for reinforced concrete frames”, Soil Dyn. Earthq. Eng., vol. 65, pp. 284–293, 2014. [26] R. Steinbuch,“Bionic Optimisation of the Earthquake Resistance of High Buildings by Tuned Mass Dampers”, Journal of Bionic Engineering, vol. 8, no. 3, pp. 335–344, 2011. [27] J.C. Doyle, B.A. Francis and A.R. Tannenbaum, Feedback Control Theory, Maxwell Macmillan, 1992. [28] S. Thenozhi, W. Yu,“Advances in modeling and vibration control of building structures”, Annual Reviews in Control, vol. 37, Issue. 2, pp. 346–364, 2013. [29] S. Thenozhi, W. Yu,“Stability analysis of active vibration control of building structure using PD/PID control”, Engineering Structure, vol. 81, pp. 208–218, 2014. [30] 蘇偉雋,慣質之非線性因素及其對汽車懸吊系統設計之影響,國立台灣大學碩士論文,2006 [31] F.C. Wang and H.A. Chan,“Vehicle suspensions with a mechatronic network strut”, Vehicle System Dynamics, Vol. 49, No. 5, pp. 811-830, 2011 [32] 徐茂盛,慣質觀念之實現及在建築物減震之應用,國立台灣大學碩士論文,2005 [33] 陳呈偉,慣質於建築物隔震系統之應用,國立台灣大學碩士論文,2007 [34] 林子謙,慣質模型的實現,國立台灣大學碩士論文,2007 [35] 詹翔安,機電懸吊系統之設計及應用,國立台灣大學碩士論文,2008 [36] E. Storer James, Passive Network Synthesis, New York, McGraw-Hill, 1957 [37] 廖柏淮,被動式機械系統之網路實現-慣質與線性矩陣不等式在火車懸吊系統上之應用,國立台灣大學碩士論文,2006 [38] The Mathworks, SimMechanics, User’s Guide, 2005 [39] http://tw.misumi-ec.com/asia/ItemDetail/10300269350.html , 三柱公司Misumi, [40] http://www.ni.com/ [41] http://www.macrosensors.com/ , LVDT本體與放大器LVC-2500 [42] http://www.wilcoxon.com/vi_index.cfm?PD_ID=34 , 731A-P31地震波加速規與放大器組。 [43] http://www.DanaherMotion.com/ [44] C. S. Li, S. S. E. Lam, M. Z. Zhang and Y. L. Wong,“Shaking Table Test of a 1:20 Scale High-Rise Building with a Transfer Plate System”, Journal of Structural Engineering, Vol. 132, No. 11, pp. 1732-1744, November 2006 [45] K. C. Chang, J. S. Hwang, S. J. Wang, B. H. Lee, Y. H. Chen,“Seismic Behavior of Structures with Building Mass Damper Design”, World Conference on Earthquake Engineering, September 2012 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52205 | - |
dc.description.abstract | 本論文討論慣質系統對於建築物地震震動控制之應用。慣質為一新開發的被動機械懸吊元件,是一個完整的雙端子機械裝置,可以取代機械系統中的質量,使得機械網路系統得以完美的對應至電子網路系統。慣質目前已成功地運用在汽車、摩托車與火車上,並證實可提升其性能。本論文將慣質系統應用於建築物減震系統,討論並分析慣質系統對於不同的建築物模型的減震效果。
本論文分為三個部分並逐一討論: 單層建築物、雙層建築物、多層建築物。首先,吾人針對單層建築物系統,進行建築物最佳化分析。本論文應用四個實際歷史地震波數據,將各慣質系統置於單層建築物懸吊系統中,比較傳統懸吊系統與慣質網路系統之性能增進。其次將建築物擴展到雙層建築物系統,並應用不同最佳化指標討論慣質懸吊系統之性能增進,以及探討兩層間的最佳化參數變化。接著將雙層結構將系統擴展到五層建築物結構,並且提高建築物剛性來比較慣質網路系統的性能增進,並討論慣質系統的數量及安裝位置對於建築物的性能增進,以及進一步討論兩棟相連的建築物系統,慣質懸吊系統對於兩棟的性能增進。 最後,吾人依據模型相似理論來實際設計建築物之縮尺模型,並安裝滾珠螺桿慣質於此縮尺模型,探討實際上慣質對於地震波的性能增進,並以SimMechanics模型來模擬驗證與實驗間的結果比較。並獨立討論慣質系統的垂直支撐和斜向支撐對於建築物性能增進影響。 | zh_TW |
dc.description.abstract | This thesis investigates the performance benefits of building suspension systems employing the inerter. The inerter was proposed as a genuine two-terminal mechanical device to substitute for the mass element to improve performance of mechanical systems. The invention of inerters bridges the gap between the mechanical and electrical systems. So far, the inerter has been successfully applied to vehicles, motorcycles, trains, and proven to enhance its performance benefits.
This thesis focuses on the following three topics: one-layer, two-layers, and multi-layers building models. First, we apply three inerter layouts and four historical earthquake data to a one-DOF building model to illustrate how inerter can improve its suspension performance. The simulation results demonstrated the effectiveness of inerters in suppressing earthquake vibrations. Second, we extended the discussion to a two-layer building system. In addtion, we used weighting performance index to analyze the performance benefits between two layers. Last, we build a multi-layers building structure and discussed the numbers and location of inerters for building performance benefits. Furthermore, we analyzed the connected suspension of adjacent building systems, and applied the inerter layouts to the concerned suspensions of adjacent buildings. For experimental verification, we applied the Similitude Law to design scale-down building models and discussed the improvment of the earthquake vibration by inerters. We also built SimMechanics models for comparison with the experimental results. In addition, we discussed the inerter in vertical and diagonal support for suppressing building vibrations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:09:31Z (GMT). No. of bitstreams: 1 ntu-104-R02522819-1.pdf: 5862204 bytes, checksum: 4830f8983c9b6e109d2a412e6de59b31 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 序論 1 1. 1 研究動機與背景 1 1. 2 文獻回顧 2 1.2. 1 建築物的耐震設計 2 1.2. 2 傳統抗震和隔震構造 4 1. 3 建築物耐震設計規範 9 1. 4 研究目的 12 第二章 慣質之理論與實現 15 2. 1 傳統機械與電子網路系統對應關係 15 2. 2 慣質的概念與原理 17 2. 3 慣質的實現和應用 18 第三章 建築物模型之建立與驗證 21 3. 1 單層建築物 21 3. 2 雙層建築物 23 3. 3 多層建築物 25 3. 4 SimMechanics模型之驗證 28 第四章 實驗硬體架構 33 4. 1 減震懸吊元件 33 4. 2 實驗設備與儀器 34 4. 2. 1 資料擷取卡 34 4. 2. 2 線性位移感測器( LVDT ) 35 4. 2. 3 地震波加速規 38 4. 2. 4 震動測試平台 40 4. 3 系統鑑別 42 第五章 單層建築物系統之震動分析 45 5. 1 地震種類 45 5. 2 最佳化指標Jinf和J2 50 5. 2. 1 Jinf指標 51 5. 2. 2 J2指標 52 5. 2. 3 Jinf與J2指標之物理意義 53 5. 3 單層建築物震動最佳化分析 54 5. 3. 1 慣質系統於震動位移影響 57 5. 3. 2 最佳化懸吊於各地震之靈感度分析 59 5. 4 建築物架構評估設計 66 5. 4. 1 模型相似理論(Similitude Law) 66 5. 4. 2 實驗架構設計 68 5. 4. 3 地震輸入訊號 69 5. 5 單層建築物實驗與模擬 69 5. 5. 1 實驗架構設定 69 5. 5. 2 實驗與模型驗證 71 5. 5. 3 實際地震波之模擬與實驗結果_慣質斜向支撐 72 5. 5. 4 實際地震波之模擬與實驗結果_慣質垂直支撐 80 5. 6 等效斜撐慣質系統分析 87 第六章 雙層建築物系統之震動分析 91 6. 1 地震波的特性 91 6. 2 雙層建築物震動最佳化分析 93 6. 2. 1 特殊輸入最佳化雙層間震動影響 93 6. 2. 2 權重常數於樓層間參數最佳化 95 6. 3 雙層建築物實驗與模擬 102 6. 3. 1 實驗架構設定 102 6. 3. 2 實驗與模型驗證 103 6. 3. 3 模擬與實驗結果 105 第七章 多層建築物系統之震動分析 109 7. 1 多層建築物之彈簧參數剛性的影響 109 7. 2 彈簧剛性(k=5x106 N/m)對於指標J2_sum的影響 110 7. 3 彈簧剛性(k=5x106 N/m)對於指標Jinf_sum的影響 114 7. 4 彈簧剛性(k=5x107 N/m)對於指標J2_sum與Jinf_sum的影響 118 7. 5 懸吊系統對於樓層間的減震影響 122 7. 5. 1 慣質系統之位置與數量對於震動的影響 123 7. 6 水平地震波對於懸吊系統樓層間的減震影響 139 7. 6. 1 慣質系統之位置與數量對於水平震動的影響 141 7. 7 相鄰建築物於水平地震波之懸吊系統最佳化設計 157 7. 7. 1 各相鄰建築物模型之懸吊系統於水平地震波最佳化設計 162 第八章 論結與未來展望 171 8. 1 結論 171 8. 2 未來展望 172 參考文獻 173 | |
dc.language.iso | zh-TW | |
dc.title | 慣質網路於建築物地震波抑制之應用 | zh_TW |
dc.title | Earthquake Vibration Suppression for Buildings with Inerter Networks | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡明祺(Mi-Ching Tsai),顏家鈺(Jia-Yush Yen),杜佳穎(Jia-Ying Tu) | |
dc.subject.keyword | 慣質,被動式元件,懸吊系統,建築物,最佳化,SimMechanics, | zh_TW |
dc.subject.keyword | inerter,passive components,suspension systems,buildings,optimization,SimMechanics, | en |
dc.relation.page | 176 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。