請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52169
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳志宏(Jyh-Horng Chen) | |
dc.contributor.author | Edzer Lienson Wu | en |
dc.contributor.author | 吳億澤 | zh_TW |
dc.date.accessioned | 2021-06-15T16:08:57Z | - |
dc.date.available | 2020-08-25 | |
dc.date.copyright | 2015-08-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-19 | |
dc.identifier.citation | P.C. Lauterbur, 'Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973,' Clin Orthop Relat Res, 3-6 (1989). 2 K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, 'SENSE: sensitivity encoding for fast MRI,' Magn Reson Med 42, 952-962 (1999). 3 M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, 'Generalized autocalibrating partially parallel acquisitions (GRAPPA),' Magn Reson Med 47, 1202-1210 (2002). 4 M. Lustig, D. Donoho, J.M. Pauly, 'Sparse MRI: The application of compressed sensing for rapid MR imaging,' Magn Reson Med 58, 1182-1195 (2007). 5 S. Mori, M. Endo, T. Tsunoo, S. Kandatsu, S. Tanada, H. Aradate, Y. Saito, H. Miyazaki, K. Satoh, S. Matsushita, M. Kusakabe, 'Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging,' Med Phys 31, 1348-1356 (2004). 6 K.K. Bernstein M, Zhou XJ., Handbook of MRI Pulse Sequences. (Elsevier). 7 Z.-P. Liang, P.C. Lauterbur, IEEE Engineering in Medicine and Biology Society., Principles of magnetic resonance imaging : a signal processing perspective. (SPIE Optical Engineering Press ;IEEE Press, Bellingham, Wash.New York, 2000). 8 J.B. Weaver, 'Simultaneous multislice acquisition of MR images,' Magn Reson Med 8, 275-284 (1988). 9 D.J. Larkman, J.V. Hajnal, A.H. Herlihy, G.A. Coutts, I.R. Young, G. Ehnholm, 'Use of multicoil arrays for separation of signal from multiple slices simultaneously excited,' J Magn Reson Imaging 13, 313-317 (2001). 10 F.A. Breuer, M. Blaimer, R.M. Heidemann, M.F. Mueller, M.A. Griswold, P.M. Jakob, 'Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging,' Magn Reson Med 53, 684-691 (2005). 11 D.A. Feinberg, S. Moeller, S.M. Smith, E. Auerbach, S. Ramanna, M. Gunther, M.F. Glasser, K.L. Miller, K. Ugurbil, E. Yacoub, 'Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging,' PLoS One 5, e15710 (2010). 12 D.A. Feinberg, K. Setsompop, 'Ultra-fast MRI of the human brain with simultaneous multi-slice imaging,' J Magn Reson 229, 90-100 (2013). 13 S.M. Junqian Xu, John Strupp, Edward J. Auerbach, Liyong Chen, David A. Feinberg, Kamil Ugurbil, Essa Yacoub, E., 'Highly Accelerated Whole Brain Imaging Using Aligned-Blipped-Controlled-aliasing Multiband EPI', 2009. 14 K. Ugurbil, J. Xu, E.J. Auerbach, S. Moeller, A.T. Vu, J.M. Duarte-Carvajalino, C. Lenglet, X. Wu, S. Schmitter, P.F. Van de Moortele, J. Strupp, G. Sapiro, F. De Martino, D. Wang, N. Harel, M. Garwood, L. Chen, D.A. Feinberg, S.M. Smith, K.L. Miller, S.N. Sotiropoulos, S. Jbabdi, J.L. Andersson, T.E. Behrens, M.F. Glasser, D.C. Van Essen, E. Yacoub, W.U.-M.H. Consortium, 'Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project,' Neuroimage 80, 80-104 (2013). 15 K.J. Lee, M.N. Paley, I.D. Wilkinson, P.D. Griffiths, 'Fast two-dimensional MR imaging by multiple acquisition with micro B(0) array (MAMBA),' Magn Reson Imaging 20, 119-125 (2002). 16 M.N. Paley, K.J. Lee, J.M. Wild, S. Fichele, E.H. Whitby, I.D. Wilkinson, E.J. Van Beek, P.D. Griffiths, 'B1AC-MAMBA: B1 array combined with multiple-acquisition micro B0 array parallel magnetic resonance imaging,' Magn Reson Med 49, 1196-1200 (2003). 17 M.N. Paley, K.J. Lee, J.M. Wild, P.D. Griffiths, E.H. Whitby, 'Simultaneous parallel inclined readout image technique,' Magn Reson Imaging 24, 557-562 (2006). 18 E.L. Wu, J.H. Chen, T.D. Chiueh, 'Wideband MRI: A new dimension of MR image acceleration', Proceedings of the 17th Annual Meeting of ISMRM, Hawaii, USA, 2009. 19 K. Setsompop, B.A. Gagoski, J.R. Polimeni, T. Witzel, V.J. Wedeen, L.L. Wald, 'Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty,' Magn Reson Med 67, 1210-1224 (2012). 20 S.P. Souza, J. Szumowski, C.L. Dumoulin, D.P. Plewes, G. Glover, 'SIMA: simultaneous multislice acquisition of MR images by Hadamard-encoded excitation,' J Comput Assist Tomogr 12, 1026-1030 (1988). 21 G.H. Glover, 'Phase-Offset Multiplanar (POMP) Volume Imaging: A New Technique,' J Magn Reson Imaging 1, 457-461 (1991). 22 D.K. Sodickson, W.J. Manning, 'Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays,' Magn Reson Med 38, 591-603 (1997). 23 H. Moriguchi, J.L. Duerk, 'Bunched phase encoding (BPE): a new fast data acquisition method in MRI,' Magn Reson Med 55, 633-648 (2006). 24 S.O. Schönberg, O. Dietrich, M.F. Reiser, Parallel Imaging in Clinical MR Applications. (Springer, 2007). 25 M.O. Kim, J. Lee, S.Y. Zho, D.H. Kim, 'Accelerated MR whole brain imaging with sheared voxel imaging using aliasing separation gradients,' Med Phys 40, 062301 (2013). 26 M. Beaumont, L. Lamalle, C. Segebarth, E.L. Barbier, 'Improved k-space trajectory measurement with signal shifting,' Magn Reson Med 58, 200-205 (2007). 27 Y. Zhang, H.P. Hetherington, E.M. Stokely, G.F. Mason, D.B. Twieg, 'A novel k-space trajectory measurement technique,' Magn Reson Med 39, 999-1004 (1998). 28 J.I. Jackson, C.H. Meyer, D.G. Nishimura, A. Macovski, 'Selection of a Convolution Function for Fourier Inversion Using Gridding,' Ieee Transactions on Medical Imaging 10, 473-478 (1991). 29 R.R. Price, L. Axel, T. Morgan, R. Newman, W. Perman, N. Schneiders, M. Selikson, M. Wood, S.R. Thomas, 'Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1,' Med Phys 17, 287-295 (1990). 30 M.J. Firbank, A. Coulthard, R.M. Harrison, E.D. Williams, 'A comparison of two methods for measuring the signal to noise ratio on MR images,' Phys Med Biol 44, N261-264 (1999). 31 C.T. Wu EL, Chen JH, 3D Isotropic Brain Imaging Using Multislice Wideband MRI, Proc. Intl. Soc. Mag. Reson. Med. 17 (2009). 32 Y.-H. Chuang, Y.-A. Huang, E.L. Wu, T.-D. Chiueh, J.H. Chen, 'Employing Wideband MRI to Diffusion Tensor Image in Rat Brain with Higher Spatial Resolution', WMIC, Seoul, Korea, 2014. 33 Y.-H. Chuang, Y.-A. Huang, Y.-H. Tung, E.L. Wu, T.-D. Chiueh, J.H. Chen, 'A Preliminary Study of 3D Mouse Spine Diffusion Tensor Imaging by Utilizing Wideband MRI Technique', WMIC, Seoul, Korea, 2014. 34 S.-H.Y. Y.-A. Huang, T.-H. H. Chao, E. L. Wu, D.-Y. Chen, K.-H. Cho, Y.-C. Chang, T.-D. Chiueh, C. W. Wu, L.-W. Kuo, J.-H. Chen, 'A Pilot Study of 2X Temporal Resolution Wideband Gradient-Echo in Rodent fMRI,' in Annual Meeting of the Organization for Human Brain Mapping (Hamburg, Germany, 2014). 35 D.G. Norris, P.J. Koopmans, R. Boyacioglu, M. Barth, 'Power Independent of Number of Slices (PINS) radiofrequency pulses for low-power simultaneous multislice excitation,' Magn Reson Med 66, 1234-1240 (2011). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52169 | - |
dc.description.abstract | Despite years of development, magnetic resonance imaging (MRI) continues to suffer from the limitations of long scanning time and low resolution, when compared to computer tomography (CT) technology. Ranked among the most important medical imaging technologies, MRI provides abundant anatomical information as well as physiological in vivo data, revealing microscopic as well as macroscopic features of biological tissue. To meet the increasing demand of such a versatile imaging modality, various methods of accelerating MRI have been developed over the past several decades. In this study, we propose two types of Wideband MRI techniques as a means of significantly increasing the speed of both 2D 3D MR imaging process. We have investigated the theoretical underpinnings of these techniques and proposed methods to enhance image-qualities. Through sequence design and adequate signal processing, accelerated 2D 3D images can be obtained without compromise. Routine usage of Wideband MRI can reduce scan times to between 1/2 and 1/8 the time currently required. From real-time biological information to functional imaging, the improved temporal/spatial resolution provided by Wideband MRI technology enables a wide variety of applications never before envisioned, and paves the way for fast whole-body early-stage cancer screening in the near future. Shorter scanning times with Wideband MRI would undoubtedly improve patient experience in MR screening. More importantly, Wideband MRI could increase patient throughput, providing significant financial benefits for the health industry around the world. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:08:57Z (GMT). No. of bitstreams: 1 ntu-104-D95548019-1.pdf: 6980087 bytes, checksum: 0a66bf66f6f0980ffd6f1d8b48868763 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii Abstract iii 摘要 iv List of Figures iv List of tables vii Chapter 1 Introduction 1 1.1 Background Motivation 2 1.2 Goals 2 1.3 Organization Of The Thesis 3 Chapter 2 Basics of MRI and Acceleration Methods 4 2.1 Brief Overview of MRI—From Excitation to Reconstruction 5 2.1.1 Physics of MR Signal Generation 5 2.1.2 Spatial Encoding And k-Space: 2D 3D 6 2.1.3 Signal Acquisition and Image Reconstruction 8 2.1.4 Scan Time in MRI and Acceleration Methods 9 2.2 Historical Overview: Simultaneous Multi-Slice Methods 10 2.3 Historical Overview: Reduced Phase-Encoding Methods 14 Chapter 3 Multiple-Frequency Excitation Wideband MRI (ME-WMRI) 17 3.1 ME-WMRI: A Simultaneous Multi-Slice Method 18 3.2 Multi-Carrier Excitation, Separation Gradient And The Effects On k-space 18 3.3 Proposed ME-WMRI Blur Mitigation Techniques 23 3.3.1 Preventing Dephasing With Coherent Acquisition 23 3.3.2 Restoring Attenuated Signals With Inverse Filtering 24 3.4 Methods and Experiment Setup 26 3.4.1 Signal Measurement And Attenuation Profile Derivation 26 3.4.2 ME-WMRI Sequence And k-space Acquisition 27 3.5 Results 29 3.5.1 W=1 Blur Mitigation Results 29 3.5.2 W=2 Blur Mitigated Phantom Images 30 3.5.3 W=2 in-vivo Imaging Results 33 3.6 Discussion 34 3.6.1 Image Quality, Contrast And SNR 34 3.6.2 Field Homogeneity And Gradient Performance 35 3.6.3 Advanced Sequence Design Implementation 36 3.7 Conclusion 37 Chapter 4 Single-Frequency Excitation Wideband MRI (SE-WMRI) 39 4.1 SE-WMRI: Acceleration With Reduced Phase Encodings 40 4.2 Inclined K-Space Trajectory And Imaging Artifacts 40 4.3 Proposed SE-WMRI Blur Mitigation Technique 42 4.3.1 Increased k-space Coverage With Zig-Zag Sequence 42 4.3.2 Gradient Switching And Soft Turns 44 4.3.3 Trajectory Measurement And Regridding 46 4.4 Methods And Experiment Setup 47 4.4.1 Standard FLASH Imaging: Phantom And Pig’s Knee 48 4.4.2 Trajectory Measurement And Evaluation Methods 48 4.5 Results 50 4.5.1 Measured Trajectory 50 4.5.2 Regridding And Reconstructed Images 51 4.5.3 Image SNR Comparison 52 4.5.4 in-vivo Images 54 4.6 Discussion 56 4.6.1 Image Quality, SNR And Contrast 56 4.6.2 Sampling And Sequence Variations 56 4.6.3 Hardware performance 57 4.7 Conclusion 57 Chapter 5 Clinical and Pre-Clinical Applications of Wideband MRI 59 5.1 SE-WMRI: High Resolution Structural Imaging 60 5.2 SE-WMRI High Spatial Resolution Diffusion Imaging 63 5.3 W=5 3D SE-WMRI Spine Diffusion Imaging 65 5.4 SE-WMRI Gradient Echo Functional Imaging 69 5.5 ME-WMRI Multi-Location Functional Imaging: Resting BOLD 74 5.6 ME-WMRI Multi-Location Dynamic Contrast Enhancement Imaging 77 5.7 SE-WMRI High Spatial Resolution Heart Imaging 80 5.8 SE-WMRI High Spatial Resolution 3D QSM Imaging 83 Chapter 6 Discussion, Conclusion and Future Works 87 6.1 Discussion 88 6.1.1 Wideband Terminology 88 6.1.2 Determining “W” “S” In ME-WMRI 88 6.1.3 Determining “W” “S” In SE-WMRI 90 6.1.4 Hardware Considerations: RF Coil And Shim 93 6.2 Conclusion 94 6.3 Future works 95 References 97 APPENDIX A: Mean Squared Error of ME-WMRI SE-WMRI Point Spread Functions 102 | |
dc.language.iso | zh-TW | |
dc.title | 新世代磁振造影技術:高時空解析度寬頻磁振造影 | zh_TW |
dc.title | Next generation MRI:High Spatial/Temporal Resolution Imaging with Wideband MRI | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 林啟萬(Chii-Wann Lin) | |
dc.contributor.oralexamcommittee | 闕志達(Tzi-Dar Chiueh),林慶波(Ching-Po Lin),陳中明(Chung-Ming Chen),蘇家豪(Chia-Hao Su),張允中(Yeun-Chung Chang) | |
dc.subject.keyword | 時空間解析度,寬頻,磁振造影, | zh_TW |
dc.subject.keyword | spatial/temporal resolution,Wideband,simultaneous multi-slice,phase encoding, | en |
dc.relation.page | 115 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。