請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52168
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳洵毅 | |
dc.contributor.author | Hao-Yuan Chou | en |
dc.contributor.author | 周浩源 | zh_TW |
dc.date.accessioned | 2021-06-15T16:08:56Z | - |
dc.date.available | 2020-08-25 | |
dc.date.copyright | 2015-08-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-19 | |
dc.identifier.citation | 1. 天地能源暨溫控器材行。2009。熱電致冷晶片。台北。網址:http://www.tande.com.tw/。上網日期:2009-09-24。
2. 朱珮柔。2007。溫度對甘藷β-澱粉酶活性影響之研究。碩士論文。國立臺灣大學台北:生命科學院微生物與生化學研究所。 3. 利幸貞、陳一心。2004。澱粉糖化酵素活性簡易測定法於甘藷加工特性之應用。中華農業研究53:18-26。 4. 利幸貞、陳一心。2005。甘藷台農72 號烤藷品質之研究。台灣農業研究54:83-92。 5. 利幸貞、廖大經。2011。利用近紅外線光譜儀檢測甘藷台農57 號烤藷品質之研究。台灣農業研究 60:178–184。 6. 陳師瑩。1997。β-澱粉酶阻礙澱粉磷解酶的分子機轉。博士論文。台北:國立台灣大學農業化學研究所。 7. 賴永昌、黃哲倫。2012。食用甘藷栽培技術及品種介紹。農業試驗所特刊第163號甘藷健康管理技術暨操作手冊: 2-12。 8. 龔財立、姜金龍。2007。甘藷品種介紹。桃園區農業專訊60期:13-15。 9. 福井俊郎、唄 能子、二国二郎。1964 液化不良ソ甘藷澱粉,澱粉工業学会誌 (Denpun kōgyō gakkaishi), 11, 25-28 10. Antonio V. 2006. Practical PID control. 1st ed., 2-18. London: Springer-Verlag. 11. Astrom, K.J., Hagglund. T., Hang, C.C., Ho, W.K. 1993. Automatic tuning and adaptation for PID controllers – a survey. Control Eng. Practice, Vol. 1, No. 4, pp. 699-71. 12. AACC Method 76-13. 1999. Total starch assay procedure. http://methods.aaccnet.org/summaries/76-13-01.aspx 13. Beck E., P. Ziegler. 1989. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mo1 Biol 40: 95-117. 14. Biester, A., M.W. Wood, and C.S. Wahlin. 1925. Carbohydrate studies I. The relative sweetness of pure sugars. Am. J. Physiol. 73:387-396. 15. Chaplin, M. F., and J. F. Kennedy. 1986. Carbohydrate analysis: a practical approach. 1st ed., 2-3. Washington, DC: Oxford. 16. Hagenimana, V. Venzina, L. and R. Simard. 1985. Sweetpotato α and β amylases: characterization and kinetic studies with endogenous inhibitors. Journal of food science 59:373-376. 17. Huang, S.-R., J.-I. Yang and Y.-C. Lee. 2013. Interactions of heat and mass transfer in steam reheating of starchy foods. Journal of Food Engineering 114(2): 174-182. 18. Levine, W. S. Ed.“PID Control,” in The Control Handbook, Piscataway, NJ: IEEE Press, 1996, pp. 198–209. 19. Megazyme. 2014. Total starch. www.megazyme.com. 20. Michael Barr. 2001. Pulse Width Modulation. Embedded Systems Programming September 2001: 103-104. 21. Nix, G.H., Lowery, G.W., Vachan, R.J. & Tanger, G.E. 1967. Direct determination of thermal diffusivity and conductivity with a refined line-source technique. Prog. in Aeronautics and Astronautics, 20, 865. 22. Picha, D. H., 1985. HPLC determination of sugars on raw and baked sweet potatoes. J. Food Sci. 50:1189-1190. 23. Picha, D. H., 1986. Sugar content of baked sweet potatoes from different cultivars and lengths of storage. J. Food Sci. 51:845-846. 24. Sawai, J., T. Nakai and M. Shimizu 2009. Reducing sugar production in sweet potatoes heated by electromagnetic radiation. Food Science and Technology International. 15:0089–95 25. Sun J. B., F. R. F. Severson and S. J. Kay. 1994. Effect of heating temperature and microwave pretreatment on the formation of sugars and volatiles in jewel sweetpotato. Journal of food quality 17:447-456. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52168 | - |
dc.description.abstract | 甘藷是台灣用途廣泛的糧食作物之一,在甘藷在加熱過程中甜度會有所增加,這是由於甘藷烘烤過程中甘藷內澱粉被轉化為醣類的結果。透過烘烤加熱加工處理程序後之甘藷所含糖分較生藷為高,此現象並非取決於甘藷本身澱粉及可溶性糖含量多寡,而是由甘藷內β-澱粉酶(β-amylase)活性高低之差異所影響。本研究為甘藷烘烤加工過程之研究提供一反應迅速之溫度控制系統,此溫度控制系統主要分為溫度感測與升溫控制兩個部分,利用熱電偶量測甘藷樣品於烘烤時之升溫狀況,並將升溫狀況輸入至電腦Labview程式進行PID控制運算,在將訊號輸出至電源控制晶片,利用電源控制晶片控制電流來控制致冷晶片的加熱與散熱,以此方式定溫控制。用熱傳導公式輔以實驗數據推算甘藷熱傳導係數,推算之熱擴散係數為1.00308*10-7,同時以電腦軟體COMSOL 5.0進行熱傳模擬,模擬甘藷於烘烤過程中升溫狀況。利用上述溫度控制系統以定溫烘烤的方式,對甘藷進行不同烘烤溫度(50~90°C)及不同烘烤時間(10~50分鐘)之試驗,檢測在不同試驗條件下甘藷水分、澱粉及可溶性糖之含量,結果顯示於80°C時甘藷內糖份含量上升最高,由80°C加熱50分鐘的結果顯示甘藷含糖量上升至約25%。 | zh_TW |
dc.description.abstract | During the process of baking, sugar content of sweet potato is increasing. As a result sweetness of the sweet potato is increasing. This phenomenon called Saccharification is not determined by the original starch content of the sweet potato and sugar content of the sweet potato, either. It is determined by the activity of β-amylase in sweet potato. The activity of β-amylase is affect by the baking temperature. This study provides a temperature control system. The baking temperature is monitored by the temperature control system and the temperature signal will be calculated by PID controller which is written in Labview software. Then the computer will deliver the result signal to the current-controlling chip which is used to control the thermoelectric cooling module. The thermoelectric cooling module is applied to control the baking temperature at constant temperature. The heat transfer equation is applied with experiment data to calculate the thermal diffusivity of the sweet potato. The calculated thermal diffusivity is 1.00308*10-7. A heat transfer simulation is built by COMSOL Multiphysics to simulate the change of temperature. The temperature control system is applied to perform the experiments with different baking temperature at the range of 60~90°C and length of time from 10 ~50min. The water, starch and sugar content of the sweet potato are examined in each experiment. The result reveals that when the temperature is controlled at 80°C, the sugar content of the sweet potato will increase more. In the condition at 80°C and baking 50min, the sugar content of the sweet potato will increase to about 25%. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:08:56Z (GMT). No. of bitstreams: 1 ntu-104-R01631047-1.pdf: 4951317 bytes, checksum: f59a4eb46365f6374ddce9651f6fdfc0 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 第一章 研究目的 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 甘藷 3 2.2 澱粉 4 2.3 烤藷相關研究 5 2.4 甘藷β澱粉酶 6 2.5 熱電致冷 7 2.5.1 Seebeck 效應 7 2.5.2 Peltier效應 8 2.5.3 Thomson效應 8 2.5.4 熱電致冷晶片 9 2.6 PID控制 10 2.6.1 比例控制 11 2.6.2 積分控制 11 2.6.3 微分控制 11 2.6.4 參數設定 11 2.7 脈衝寬度調變 12 2.8 澱粉檢驗原理 14 第三章 研究方法 15 3.1 實驗材料-甘藷 15 3.2 溫度控制設備 15 3.2.1 加熱設備 17 3.2.2 溫度量測 19 3.3 加熱溫度及時間對烤藷品質的影響 20 3.3.1 熱傳分析 22 3.4 化學成份分析 23 3.4.1 麥芽糖、果糖、葡萄糖之含量測定 23 3.4.2 澱粉含量測定 25 3.4.3 甘藷水分含量測定 29 第四章 結果與討論 30 4.1 甘藷烘烤實驗 30 4.1.1 加熱設備性能測試 30 4.1.2 甘藷加溫測試 33 4.2 化學成份分析 39 4.2.1 甘藷水分含量測定 39 4.2.2 麥芽糖、果糖、葡萄糖之含量測定 41 4.2.3 澱粉含量測定 46 第五章 結論 49 參考文獻 50 附錄 53 | |
dc.language.iso | zh-TW | |
dc.title | 甘藷定溫加熱過程澱粉糖化研究 | zh_TW |
dc.title | Starch Saccharification in Baking of Sweet Potato at Constant Temperature | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李允中 | |
dc.contributor.oralexamcommittee | 馮臨惠 | |
dc.subject.keyword | 溫度控制,甘藷糖化,定溫, | zh_TW |
dc.subject.keyword | Temperature control,saccharification,constant temperature, | en |
dc.relation.page | 64 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。