請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52160完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任(Yuh-Renn Wu) | |
| dc.contributor.author | Chung-Cheng Hsu | en |
| dc.contributor.author | 許仲成 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:08:49Z | - |
| dc.date.available | 2015-08-19 | |
| dc.date.copyright | 2015-08-19 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | [1] T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite
Elements in Engineering. Person Education International, 2002. [2] J. Singh, Electronic and Optoelectronic Properties of Semiconduc- tor Structures. Cambridge, 2003. [3] T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” Journal of Applied Physics, vol. 116, no. 11, p. 113104, 2014. [4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-lightemitting diodes,” Applied Physics Letters, vol. 64, no. 13, pp. 1687–1689, 1994. [5] T. N. Yongke Sun, Scott E. Thompson, Strain Effect in Semicon- ductors Theory and Device Applications. Springer, 2010. [6] Z.-H. Zhang, S. T. Tan, Z. Kyaw, Y. Ji, W. Liu, Z. Ju, N. Hasanov, X. W. Sun, and H. V. Demir, “InGaN/GaN light- 68 emitting diode with a polarization tunnel junction,” Applied Physics Letters, vol. 102, no. 19, p. 193508, 2013. [7] K. Pantzas, G. Patriarche, D. Troadec, M. Kociak, N. Cherkashin, M. H‥ytch, J. Barjon, C. Tanguy, T. Rivera, S. Suresh, et al., “Role of compositional fluctuations and their suppression on the strain and luminescence of InGaN alloys,” Journal of Applied Physics, vol. 117, no. 5, p. 055705, 2015. [8] Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Applied Physics Letters, vol. 101, no. 8, p. 083505, 2012. [9] N. Okada, H. Kashihara, K. Sugimoto, Y. Yamada, and K. Tadatomo, “Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes,” Journal of Applied Physics, vol. 117, no. 2, p. 025708, 2015. [10] H. Wang, X. Wang, Q. Tan, and X. Zeng, “V-defects formation and optical properties of InGaN/GaN multiple quantum well 69 LED grown on patterned sapphire substrate,” Materials Science in Semiconductor Processing, vol. 29, pp. 112–116, 2015. [11] J. Smalc-Koziorowska, E. Grzanka, R. Czernecki, D. Schiavon, and M. Leszczy′nski, “Elimination of trench defects and V-pits from InGaN/GaN structures,” Applied Physics Letters, vol. 106, no. 10, p. 101905, 2015. [12] J. Bai, T. Wang, P. Parbrook, I. Ross, and A. Cullis, “Vshaped pits formed at the GaN/AlN interface,” Journal of Crystal Growth, vol. 289, no. 1, pp. 63 – 67, 2006. [13] C.-L.Wang, M.-C. Tsai, J.-R. Gong, W.-T. Liao, P.-Y. Lin, K.-Y. Yen, C.-C. Chang, H.-Y. Lin, and S.-K. Hwang, “Influence of Al- GaN/GaN superlattice inserted structure on the performance of InGaN/GaN multiple quantum well light emitting diodes,” Ma- terials Science and Engineering: B, vol. 138, no. 2, pp. 180–183, 2007. Society of Vacuum Coaters 2nd Symposium on Smart Materials. [14] Y.-J. Lee, H.-C. Kuo, T.-C. Lu, S.-C.Wang, K.W. Ng, K.M. Lau, Z.-P. Yang, A.-P. Chang, and S.-Y. Lin, “Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned 70 sapphire substrate with V-shaped pits roughening surfaces,” Lightwave Technology, Journal of, vol. 26, pp. 1455–1463, June 2008. [15] X. Wu, J. Liu, Z. Quan, C. Xiong, C. Zheng, J. Zhang, Q. Mao, and F. Jiang, “Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes,” Ap- plied Physics Letters, vol. 104, no. 22, p. 221101, 2014. [16] T. Tao, T. Zhi, B. Liu, Y. Li, Z. Zhuang, Z. Xie, D. Chen, P. Chen, R. Zhang, and Y. Zheng, “Spatially localised luminescence emission properties induced by formation of ring-shaped quasi-potential trap around V-pits in InGaN epi-layers,” physica status solidi (a), vol. 211, no. 12, pp. 2823–2827, 2014. [17] N. Okada, H. Kashihara, K. Sugimoto, Y. Yamada, and K. Tadatomo, “Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes,” Journal of Applied Physics, vol. 117, no. 2, p. 025708, 2015. [18] C. Soh, S. J. Chua, S. Tripathy, W. Liu, and D. Chi, “The influence of V defects on luminescence properties of AlInGaN qua- 71 ternary alloys,” Journal of Physics: Condensed Matter, vol. 17, no. 4, p. 729, 2005. [19] L. C. Le, D. G. Zhao, D. S. Jiang, L. Li, L. L. Wu, P. Chen, Z. S. Liu, Z. C. Li, Y. M. Fan, J. J. Zhu, H. Wang, S. M. Zhang, and H. Yang, “Carriers capturing of V-defect and its effect on leakage current and electroluminescence in InGaN-based light-emitting diodes,” Applied Physics Letters, vol. 101, no. 25, p. 252110, 2012. [20] Q. Wang, J. Bai, Y. Gong, and T. Wang, “Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods,” Journal of Physics D: Applied Physics, vol. 44, no. 39, p. 395102, 2011. [21] C.-H. Liao, W.-M. Chang, H.-S. Chen, C.-Y. Chen, Y.-F. Yao, H.-T. Chen, C.-Y. Su, S.-Y. Ting, Y.-W. Kiang, and C. C. Yang, “Geometry and composition comparisons between c-plane disclike and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod,” Opt. Express, vol. 20, pp. 15859–15871, Jul 2012. [22] J. Bai, Q. Wang, and T. Wang, “Characterization of InGaNbased nanorod light emitting diodes with different indium compo- 72 sitions,” Journal of Applied Physics, vol. 111, no. 11, p. 113103, 2012. [23] Y.-H. Ra, R. Navamathavan, S. Kang, and C.-R. Lee, “Different characteristics of InGaN/GaN multiple quantum well heterostructures grown on m- and r-planes of a single n-gan nanowire using metalorganic chemical vapor deposition,” J. Mater. Chem. C, vol. 2, pp. 2692–2701, 2014. [24] X. Wang, S. Li, M. S. Mohajerani, J. Ledig, H.-H. Wehmann, M. Mandl, M. Strassburg, U. Steegmuller, U. Jahn, J. Lahnemann, et al., “Continuous-flow MOVPE of Ga-polar GaN column arrays and core-shell LED structures,” Crystal Growth & Design, vol. 13, no. 8, pp. 3475–3480, 2013. [25] X. Zhang, D. Zhao, M. Gao, H. Dong, W. Zhou, and S. Xie, “Site-specific multi-stage CVD of large-scale arrays of ultrafine ZnO nanorods,” Nanotechnology, vol. 22, no. 13, p. 135603, 2011. [26] M. Auf der Maur, F. Sacconi, and A. Di Carlo, “A parametric study of InGaN/GaN nanorod core-shell LEDs,” IEEE Transac- tions on Electron Devices, vol. 60, pp. 171–177, Jan 2013. 73 [27] C.-H. Liao,W.-M. Chang, Y.-F. Yao, H.-T. Chen, C.-Y. Su, C.-Y. Chen, C. Hsieh, H.-S. Chen, C.-G. Tu, Y.-W. Kiang, C. C. Yang, and T.-C. Hsu, “Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantumwell nanorod arrays,” Journal of Applied Physics, vol. 113, no. 5, p. 054315, 2013. [28] J.-R. Chang, S.-P. Chang, Y.-J. Li, Y.-J. Cheng, K.-P. Sou, J.-K. Huang, H.-C. Kuo, and C.-Y. Chang, “Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars,” Applied Physics Letters, vol. 100, no. 26, p. 261103, 2012. [29] T.-W. Yeh, Y.-T. Lin, L. S. Stewart, P. D. Dapkus, R. Sarkissian, J. D. OBrien, B. Ahn, and S. R. Nutt, “InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays,” Nano letters, vol. 12, no. 6, pp. 3257–3262, 2012. [30] C.-W. Wu and Y.-R. Wu, “Thermoelectric characteristic of the rough InN/GaN core-shell nanowires,” Journal of Applied Physics, vol. 116, no. 10, p. 103707, 2014. 74 [31] C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.- R. Wu, “Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire lightemitting diodes,” Journal of Applied Physics, vol. 113, no. 18, p. 183104, 2013. [32] C.-G. Tu, C.-H. Liao, Y.-F. Yao, H.-S. Chen, C.-H. Lin, C.-Y. Su, P.-Y. Shih, W.-H. Chen, E. Zhu, Y.-W. Kiang, et al., “Regularly patterned non-polar InGaN/GaN quantum-well nanorod lightemitting diode array,” Optics express, vol. 22, no. 107, pp. A1799– A1809, 2014. [33] A. Romanov, T. Baker, S. Nakamura, and J. Speck, “Straininduced polarization in wurtzite III-nitride semipolar layers,” Journal of Applied Physics, vol. 100, no. 2, 2006. [34] J. Liu, Y. Wang, H. Yang, D. Jiang, U. Jahn, K. Ploog, et al., “Investigations on V-defects in quaternary AlInGaN epilayers,” Applied Physics Letters, vol. 84, no. 26, pp. 5449–5451, 2004. [35] L. C. Le, D. G. Zhao, D. S. Jiang, L. Li, L. L. Wu, P. Chen, Z. S. Liu, J. Yang, X. J. Li, X. G. He, J. J. Zhu, H. Wang, S. M. Zhang, and H. Yang, “Effect of V-defects on the performance deteriora- 75 tion of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness,” Journal of Applied Physics, vol. 114, no. 14, p. 143706, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52160 | - |
| dc.description.abstract | 由於能源危機,氮化鎵發光二極體因為有較好的轉換效率而越
來越熱門。但氮化鎵發光二極體還是面對許多問題,其中之一就是 氮化銦鎵和氮化鎵之間的晶格不匹配,在氮化銦鎵和氮化鎵之間因 為晶格常數的布匹配會造成應變,這應變會造成壓電場使氮化銦鎵 量子井中電子電洞的波函數分離,這種效應稱為量子侷限史塔克效 性,這會降低氮化鎵發光二極體的效率,所以分析應變在研究氮化 鎵發光二極體是很重要的,在很多研究中完整應變近似模型是很常 被使用的,但在許多奈米尺度的問題上這是不適合的,因為在奈米 尺度中整個系統會分配應變,讓系統有最小的應變能量。因此在這 篇文章中,我們使用了三維有限元素法連續彈性模型來分析奈米結 構的應變問題,包含銦擾動的量子井、有V形凹洞的氮化鎵發光二 極體和殼型奈米柱發光二極體。在第一個問題中,我們分析了隨機 銦含量分布的量子井中應變的分布,再接著算出感應的極化電荷, 在我們的分析結果發現,完整應變近似模型忽略了不同銦含量分子 間作用力的影響和不規則分布的銦含量所造成的剪應變這讓完整應 變近似模型有比較銳利的應變分布和較高的總應變能量。我們接 著分析有V形凹洞的氮化鎵發光二極體和殼型奈米柱發光二極體, 有V形凹洞的氮化鎵發光二極體由於r-平面的側壁結構讓應變分佈變 得非常有趣,在本篇論文的最後我們分析了一個有著不同直徑的奈 米柱的應變分佈,並觀察了在這樣結構中氮化銦鎵量子井的應變變 化的行為,接著得到在直徑較小的奈米柱中,有比較顯著的氮化銦 鎵應變釋放。有了這個模擬模型,未來我們可以分析更多不同結構 的應變分佈。 | zh_TW |
| dc.description.abstract | Due to the energy crisis, GaN-based light emitting diodes (LEDs) become more popular due to their better power efficiency. However, GaN-based LEDs still have many problems. One of them is the lattice mismatch between InGaN and GaN. The strain induced by lattice mismatch between InGaN and GaN layers will make the wave functions of electron and hole separate in the InGaN quantum well (QW) by induced piezoelectric field. This is called quantum confined stark effect (QCSE) and will limit the efficiency of GaN-based LED. Thus, it is important to analyze the strain distribution in the GaN-based LED. In many researches, the fully strained approximation model is widely used in lateral grown thin film. However, it is not appropriate in nano-scale structures because the system would distribute strains to reach the minimum strain energy. In this thesis, we use 3D finite element method (FEM) continuous elastic model to analyze nano-scale structures, including indium fluctuated QWs, GaN-based LED with V-pit, and core-shell nanorod. For the first case, we analyzed how the strain distributed in the random alloy fluctuation QW and then calculated the induced polarization charges in the QW. We find that the fully strained approximation model neglects the inter-molecular interactions and the shear strains caused by random distributed indium composition. These make the fully strained approximation model has sharp strain distributions and higher total strain energy. We further
analyze the strain distributions in the GaN-based LED with V-pit and core-shell nanorod. Because of the r-plane sidewall structure in the V-pit, the strain distributions might be interesting and could be an example to compare the FEM strain solver with the fully strained approximation model. At the end of this thesis, we analyze the strain distributions in a core-shell nanorod with three different diameters and investigate the strain differences. The results show that a smaller diameter nanorod has an obvious strain relaxation. In the future, with this 3D FEM continuous elastic simulation program, we can exactly analyze the strain distributions for many different nano-scale structures. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:08:49Z (GMT). No. of bitstreams: 1 ntu-104-R02941033-1.pdf: 3036601 bytes, checksum: b5b04c2192d1c91ad708a2b436dbfaa9 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Strain Effect . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Strain effect in the epitaxial layer . . . . . . . . 3 1.3 Polar materials and polarization charge . . . . . . . . . 5 1.3.1 Piezoelectric effect . . . . . . . . . . . . . . . . 5 1.3.2 Polar charge at interface . . . . . . . . . . . . . 7 1.4 Several LEDs’ issues . . . . . . . . . . . . . . . . . . . 8 1.4.1 Indium fluctuation . . . . . . . . . . . . . . . . 8 1.4.2 V-pits in the LED . . . . . . . . . . . . . . . . 11 1.4.3 Core-shell nanorod LED . . . . . . . . . . . . . 13 viii 1.5 Finite element method of strain analysis . . . . . . . . 16 2 Methodology [1] . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1 Finite element method . . . . . . . . . . . . . . . . . . 18 2.1.1 Equilibrium equations . . . . . . . . . . . . . . 18 2.1.2 Stress-strain-displacement relations . . . . . . . 21 2.1.3 Rayleigh-Ritz method . . . . . . . . . . . . . . 22 2.1.4 Element formulation . . . . . . . . . . . . . . . 23 2.1.5 Element stiffness . . . . . . . . . . . . . . . . . 29 2.1.6 Validation . . . . . . . . . . . . . . . . . . . . . 32 3 Result and discussion . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Strain results of indium fluctuation QWs . . . . . . . . 37 3.1.1 Simulation structure . . . . . . . . . . . . . . . 38 3.1.2 Strain results . . . . . . . . . . . . . . . . . . . 40 3.2 Strain results of LED with V-pit . . . . . . . . . . . . . 48 3.2.1 Simulation structure . . . . . . . . . . . . . . . 49 3.2.2 Strain results . . . . . . . . . . . . . . . . . . . 49 3.3 Strain results of core-shell nanorod LED . . . . . . . . 56 3.3.1 Simulation structure . . . . . . . . . . . . . . . 56 3.3.2 Strain results . . . . . . . . . . . . . . . . . . . 58 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ix Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 | |
| dc.language.iso | en | |
| dc.subject | 殼狀奈米柱 | zh_TW |
| dc.subject | 關鍵字:氮化鎵發光二極體 | zh_TW |
| dc.subject | 應變 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 銦元素擾動 | zh_TW |
| dc.subject | V形凹 洞 | zh_TW |
| dc.subject | Keywords:GaN-based light emitting diode | en |
| dc.subject | core-shell nano rod | en |
| dc.subject | V-pit | en |
| dc.subject | Indium fluctuation | en |
| dc.subject | finite element method | en |
| dc.subject | Strian | en |
| dc.title | 三維有限元素法應變分析應用於氮化鎵基底奈米結構發光二極體 | zh_TW |
| dc.title | 3D Finite Element Strain Analysis of GaN based LED Nanostructures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,黃建璋,陳奕君 | |
| dc.subject.keyword | 關鍵字:氮化鎵發光二極體,應變,有限元素法,銦元素擾動,V形凹 洞,殼狀奈米柱, | zh_TW |
| dc.subject.keyword | Keywords:GaN-based light emitting diode,Strian,finite element method,Indium fluctuation,V-pit,core-shell nano rod, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
