Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群(Pei-Chun Lin)
dc.contributor.authorTzu-Han Linen
dc.contributor.author林子涵zh_TW
dc.date.accessioned2021-06-15T16:08:46Z-
dc.date.available2020-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation[1] iRobot, ' iRobot Roomba reg; Vacuum Cleaning Robot.'
[2] bluefrogrobotics, 'THE COMPANION ROBOT ACCESSIBLE TO EVERYONE.'
[3] MIRATA, 'KIBO ROBOT PROJECT.'
[4] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, 'Bigdog, the rough-terrain quadruped robot,' in Proceedings of the 17th World Congress, 2008, pp. 10822-10825.
[5] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, 'Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot,' in Robotics and Automation (ICRA), 2013 IEEE International Conference on, 2013, pp. 3307-3312.
[6] M. P. Murphy, A. Saunders, C. Moreira, A. A. Rizzi, and M. Raibert, 'The littledog robot,' The International Journal of Robotics Research, p. 0278364910387457, 2010.
[7] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G. Atkeson, et al., 'Optimization and learning for rough terrain legged locomotion,' The International Journal of Robotics Research, vol. 30, pp. 175-191, 2011.
[8] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, 'Learning, planning, and control for quadruped locomotion over challenging terrain,' The International Journal of Robotics Research, vol. 30, pp. 236-258, 2011.
[9] L. Palmer III and M. Palankar, 'Blind hexapod walking over uneven terrain using only local feedback,' in Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, 2011, pp. 1603-1608.
[10] J. J. Craig and M. H. Raibert, 'A systematic method of hybrid position/force control of a manipulator,' in Computer Software and Applications Conference, 1979. Proceedings. COMPSAC 79. The IEEE Computer Society's Third International, 1979, pp. 446-451.
[11] Z. Zhang and H. Kimura, 'Rush: a simple and autonomous quadruped running robot,' Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 223, pp. 323-336, 2009.
[12] A. Roennau, G. Heppner, M. Nowicki, J. Zoellner, and R. Dillmann, 'Reactive posture behaviors for stable legged locomotion over steep inclines and large obstacles,' in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, 2014, pp. 4888-4894.
[13] M. Goeller, A. Roennau, A. Gorbunov, G. Heppner, and R. Dillmann, 'Pushing around a robot: Force-based manual control of the six-legged walking robot LAURON,' in Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, 2011, pp. 2647-2652.
[14] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell, 'Design of HyQ–a hydraulically and electrically actuated quadruped robot,' Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, p. 0959651811402275, 2011.
[15] M. Oku, H. Yang, G. Paio, Y. Harada, K. Adachi, R. Barai, et al., 'Development of hydraulically actuated hexapod robot COMET-IV-The 1st report: System design and configuration,' in Proceedings of the 2007 JSME Conference on Robotics and Mechatronics, Akita, Japan, 2007.
[16] M. Focchi, T. Boaventura, C. Semini, M. Frigerio, J. Buchli, and D. G. Caldwell, 'Torque-control based compliant actuation of a quadruped robot,' in Advanced Motion Control (AMC), 2012 12th IEEE International Workshop on, 2012, pp. 1-6.
[17] M. Spenko, G. C. Haynes, J. Sanders, M. R. Cutkosky, A. A. Rizzi, R. J. Full, et al., 'Biologically inspired climbing with a hexapedal robot,' Departmental Papers (ESE), p. 397, 2008.
[18] Y. Ambe and F. Matsuno, 'Leg-grope-walk—Walking strategy on weak and irregular slopes for a quadruped robot by force distribution,' in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, 2012, pp. 1840-1845.
[19] 鄒亞成, '仿生六足機器人越障步態與跳躍步態開發,' 2012.
[20] 游崴舜, '可側傾雙輪機器人之運動控制與其內部機器人泛用機電系統架構,' 2012.
[21] 黃科融, '具滾動介面之新式彈性倒擺模型與其應用於六足機器人動態跑步步態開發,' 2012.
[22] 林昌豪, '與馬達整合之多軸力規開發與建構六足機器人之力回授動態慢跑步態,' 2013.
[23] U. Saranli, M. Buehler, and D. E. Koditschek, 'RHex: A simple and highly mobile hexapod robot,' The International Journal of Robotics Research, vol. 20, pp. 616-631, 2001.
[24] 黃群凱, '具彈性與滾動介面之足動態模型開發與其之基礎模型角色以誘發六足機器人之多種動態步態,' 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52156-
dc.description.abstract本論文致力於內嵌於六足機器人之多軸力感測器的開發,並提出不同的校正方式使得校正方法能夠更為貼近真實的情況。藉由修改力規校正時的固定方式,使真實機器人與地面之間的作用力傳遞到力感測器的方式和校正方式相同,如此力感測器量測到的資訊即為馬達輸出扭力、圓弧形腳對於身體產生的平行於運動方向以及重力方向的驅動力。此外,利用商用力規與自製力規進行訊號校正,並利用標準一公斤重物在靜態放置以及動態旋轉下對馬達框架的施力比較,以評估自製力感測器所量測到的資訊是否更接近真實情況。
原本在Two-leg Model下生成的動態步態軌跡由於真實機器人落地時的初始狀態與模型中的不同,造成動態步態的成功率無法很高,但在六足機器人身上整合了力感測器之後,能夠量測到多軸力與力矩來感知到機器人在環境中的狀態,並回饋到系統以修正機器人的步態軌跡,使其能夠在下一步開始的初始狀態與模型更為接近,藉此減少機器人產生非模型中的落地情況像是機身撞到地面,使得機器人能跑出更像模擬中的動態步態且成功率提高。
此外,可利用卡爾曼濾波器將IMU與傾斜儀整合為身體姿態,再加入力感測器獲得的軸向力資訊建立平面模型,可計算出機器人在運動時腳與地面的接觸位置,並以實驗的方式證實其可行性。
zh_TW
dc.description.abstractThe purpose of this thesis is to develop a multi-axis force sensor that can be mounted into a hexapod robot, and propose a calibration method that is closer to realistic situation and use the force information obtained to develop a feedback control method to make the dynamic motion more stable.
By revising the fixing method of the force sensor, the path of the force passing from ground to the force sensors is now the same as the calibration method. Through the comparison between self-made force sensor and commercial force sensor, and using a standard one-kilogram object to conduct both static and rotating experiment the accuracy of the force sensor is verified.
When using the trajectories generated by two-leg model proposed in previous research the successful rate of achieving stable dynamic gaits is relatively low due to the difference of the initial condition between the model and realistic situation. With force sensors integrated, the force and torque information is fed back to adjust the robot trajectory. The feedback control changes the initial condition of the next step so that it is closer to the condition calculated with the model, and thus reduce the unexpected behavior such as robot body hitting the ground.
The information obtained from IMU and clinometer is sent into Kalman filter to establish the body posture in space, and using the posture along with the force signal obtained from force sensor the surface model is developed. The contact point between the robot legs and ground can thus be known exactly. Experiments are conducted to verify the result.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:08:46Z (GMT). No. of bitstreams: 1
ntu-104-R02522815-1.pdf: 6318126 bytes, checksum: 13da145938d12c45826678920a3154aa (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 2
1.4 貢獻 5
1.5 論文架構 5
第二章 實驗平台與相關原理 6
2.1 目前實驗平台 6
2.1.1 圓弧形腳 6
2.1.2 直流有刷馬達 7
2.1.3 機電系統 8
2.1.4感測器 9
2.2 相關原理介紹 10
2.2.1 訊號轉換 10
2.2.2 惠斯同電橋 11
2.2.3 RSLIP Model 12
2.3 應變計 13
第三章 力感測器之開發 15
3.1前言 15
3.2力感測器外型 15
3.3力規訊號校正 18
3.3.1 商用力規 18
3.3.2 校正矩陣 20
3.3.3 校正結果 20
3.3.4 雜訊處理 21
3.4標準重物實驗 23
3.4.1 新的校正方法 26
3.4.2 標準重物靜態實驗 29
3.4.2 標準重物動態實驗 33
第四章 力回饋控制與實驗 37
4.1前言 37
4.2踏點計算 37
4.2.1 踏點平面模型 37
4.2.2 開迴路慢跑步態踏點實驗 38
4.2.2.1 開迴路慢跑步態實驗流程 40
4.2.2.2 開迴路慢跑步態實驗結果 41
4.2.2.3 卡爾曼濾波器 42
4.2.2.4 加入身體姿態之踏點實驗 44
4.3動態步態力回饋控制 45
4.3.1 Two-leg Model 46
4.3.2 開迴路蹦跳步態 47
4.3.3 力回饋控制蹦跳步態 51
4.3.3.1 力回饋控制架構 51
4.3.3.2 軟體架構 52
4.3.3.3力回饋蹦跳實驗 52
4.3.3.4 動態擷取系統 53
4.3.3.4蹦跳步態實驗結果 55
第五章 結論與未來展望 58
5.1結論 58
5.2未來展望 58
參考文獻 60
dc.language.isozh-TW
dc.subject六足機器人zh_TW
dc.subject踏點計算zh_TW
dc.subject多軸力感測器zh_TW
dc.subject力回饋控制zh_TW
dc.subjectmulti-axis force sensoren
dc.subjectforce feedbacken
dc.subjectRHexen
dc.subjectstep point calculationen
dc.title多軸力規開發與其在多足機器人上之應用zh_TW
dc.titleThe Development of a Multi-axis Force Sensor and its Applications on a Legged Roboten
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃光裕(Kuang-Yuh Huang),顏炳郎(Bing-Lang Yen)
dc.subject.keyword多軸力感測器,六足機器人,力回饋控制,踏點計算,zh_TW
dc.subject.keywordmulti-axis force sensor,force feedback,RHex,step point calculation,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved