請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52155完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱家瑩 | |
| dc.contributor.author | Yu-Chi Lin | en |
| dc.contributor.author | 林郁綺 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:08:45Z | - |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | 1 Salo, E. & Baguna, J. Regeneration in planarians and other worms: New findings, new tools, and new perspectives. J Exp Zool 292, 528-539, doi:10.1002/jez.90001 (2002).
2 Sakai, F., Agata, K., Orii, H. & Watanabe, K. Organization and regeneration ability of spontaneous supernumerary eyes in planarians -eye regeneration field and pathway selection by optic nerves. Zoological science 17, 375-381, doi:10.2108/jsz.17.375 (2000). 3 Agata, K. et al. Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zoological science 15, 433-440, doi:10.2108/zsj.15.433 (1998). 4 Slack, J. M. Development. Planarian pluripotency. Science 332, 799-800, doi:10.1126/science.1206913 (2011). 5 Morgan, T. H. Regeneration and Liability to Injury. Science 14, 235-248, doi:10.1126/science.14.346.235 (1901). 6 Benazzi, M. Considerations on the neoblasts of planarians on the basis of certain karyological evidence. Chromosoma 19, 14-27 (1966). 7 Eisenhoffer, G. T., Kang, H. & Sanchez Alvarado, A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell stem cell 3, 327-339, doi:10.1016/j.stem.2008.07.002 (2008). 8 Solana, J. et al. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach. Genome biology 13, R19, doi:10.1186/gb-2012-13-3-r19 (2012). 9 Pellettieri, J. & Sanchez Alvarado, A. Cell turnover and adult tissue homeostasis: from humans to planarians. Annual review of genetics 41, 83-105, doi:10.1146/annurev.genet.41.110306.130244 (2007). 10 Reddien, P. W., Oviedo, N. J., Jennings, J. R., Jenkin, J. C. & Sanchez Alvarado, A. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327-1330, doi:10.1126/science.1116110 (2005). 11 Guo, T., Peters, A. H. & Newmark, P. A. A Bruno-like gene is required for stem cell maintenance in planarians. Developmental cell 11, 159-169, doi:10.1016/j.devcel.2006.06.004 (2006). 12 Cebria, F. et al. Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Development, growth & differentiation 44, 135-146 (2002). 13 Inoue, T., Hayashi, T., Takechi, K. & Agata, K. Clathrin-mediated endocytic signals are required for the regeneration of, as well as homeostasis in, the planarian CNS. Development 134, 1679-1689, doi:10.1242/dev.02835 (2007). 14 Kobayashi, C., Saito, Y., Ogawa, K. & Agata, K. Wnt signaling is required for antero-posterior patterning of the planarian brain. Developmental biology 306, 714-724, doi:10.1016/j.ydbio.2007.04.010 (2007). 15 Reya, T. Regulation of hematopoietic stem cell self-renewal. Recent progress in hormone research 58, 283-295 (2003). 16 Masckauchan, T. N., Shawber, C. J., Funahashi, Y., Li, C. M. & Kitajewski, J. Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 8, 43-51, doi:10.1007/s10456-005-5612-9 (2005). 17 Petersen, C. P. & Reddien, P. W. Wnt signaling and the polarity of the primary body axis. Cell 139, 1056-1068, doi:10.1016/j.cell.2009.11.035 (2009). 18 Gurley, K. A., Rink, J. C. & Sanchez Alvarado, A. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323-327, doi:10.1126/science.1150029 (2008). 19 Iglesias, M., Almuedo-Castillo, M., Aboobaker, A. A. & Salo, E. Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/beta-catenin pathway. Developmental biology 358, 68-78, doi:10.1016/j.ydbio.2011.07.013 (2011). 20 Almuedo-Castillo, M., Sureda-Gomez, M. & Adell, T. Wnt signaling in planarians: new answers to old questions. The International journal of developmental biology 56, 53-65, doi:10.1387/ijdb.113451ma (2012). 21 Petersen, C. P. & Reddien, P. W. A wound-induced Wnt expression program controls planarian regeneration polarity. Proceedings of the National Academy of Sciences of the United States of America 106, 17061-17066, doi:10.1073/pnas.0906823106 (2009). 22 Petersen, C. P. & Reddien, P. W. Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319, 327-330, doi:10.1126/science.1149943 (2008). 23 Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436-439, doi:10.1126/science.1126088 (2006). 24 Prochnik, S. E., Rokhsar, D. S. & Aboobaker, A. A. Evidence for a microRNA expansion in the bilaterian ancestor. Development genes and evolution 217, 73-77, doi:10.1007/s00427-006-0116-1 (2007). 25 Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004). 26 Yeom, K. H., Lee, Y., Han, J., Suh, M. R. & Kim, V. N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic acids research 34, 4622-4629, doi:10.1093/nar/gkl458 (2006). 27 Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & development 17, 3011-3016, doi:10.1101/gad.1158803 (2003). 28 Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744, doi:10.1038/nature03868 (2005). 29 Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes & development 17, 49-63, doi:10.1101/gad.1048103 (2003). 30 Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes & development 18, 132-137, doi:10.1101/gad.1165404 (2004). 31 Thomson, D. W., Bracken, C. P. & Goodall, G. J. Experimental strategies for microRNA target identification. Nucleic acids research 39, 6845-6853, doi:10.1093/nar/gkr330 (2011). 32 Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553-563, doi:10.1016/j.cell.2005.07.031 (2005). 33 Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Molecular cell 21, 533-542, doi:10.1016/j.molcel.2006.01.031 (2006). 34 Bracht, J. R., Van Wynsberghe, P. M., Mondol, V. & Pasquinelli, A. E. Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans. Developmental biology 348, 210-221, doi:10.1016/j.ydbio.2010.10.003 (2010). 35 Qi, J. et al. microRNAs regulate human embryonic stem cell division. Cell cycle 8, 3729-3741 (2009). 36 He, J. F., Luo, Y. M., Wan, X. H. & Jiang, D. Biogenesis of MiRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. Journal of biochemical and molecular toxicology 25, 404-408, doi:10.1002/jbt.20396 (2011). 37 Tie, Y., Liu, B., Fu, H. & Zheng, X. Circulating miRNA and cancer diagnosis. Science in China. Series C, Life sciences / Chinese Academy of Sciences 52, 1117-1122, doi:10.1007/s11427-009-0158-5 (2009). 38 Palakodeti, D., Smielewska, M. & Graveley, B. R. MicroRNAs from the Planarian Schmidtea mediterranea: a model system for stem cell biology. Rna 12, 1640-1649, doi:10.1261/rna.117206 (2006). 39 Friedlander, M. R. et al. High-resolution profiling and discovery of planarian small RNAs. Proceedings of the National Academy of Sciences of the United States of America 106, 11546-11551, doi:10.1073/pnas.0905222106 (2009). 40 Sasidharan, V. et al. Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea. Rna 19, 1394-1404, doi:10.1261/rna.038653.113 (2013). 41 Nolo, R., Morrison, C. M., Tao, C., Zhang, X. & Halder, G. The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16, 1895-1904, doi:10.1016/j.cub.2006.08.057 (2006). 42 Becam, I., Rafel, N., Hong, X., Cohen, S. M. & Milan, M. Notch-mediated repression of bantam miRNA contributes to boundary formation in the Drosophila wing. Development 138, 3781-3789, doi:10.1242/dev.064774 (2011). 43 Peng, H. W., Slattery, M. & Mann, R. S. Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes & development 23, 2307-2319, doi:10.1101/gad.1820009 (2009). 44 Herranz, H., Hong, X. & Cohen, S. M. Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 22, 651-657, doi:10.1016/j.cub.2012.02.050 (2012). 45 Herranz, H., Perez, L., Martin, F. A. & Milan, M. A Wingless and Notch double-repression mechanism regulates G1-S transition in the Drosophila wing. The EMBO journal 27, 1633-1645, doi:10.1038/emboj.2008.84 (2008). 46 Huang, H. et al. Bantam is essential for Drosophila intestinal stem cell proliferation in response to Hippo signaling. Developmental biology 385, 211-219, doi:10.1016/j.ydbio.2013.11.008 (2014). 47 Lam, V., Tokusumi, T., Tokusumi, Y. & Schulz, R. A. bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche. Biochemical and biophysical research communications 453, 467-472, doi:10.1016/j.bbrc.2014.09.109 (2014). 48 Parrish, J. Z., Xu, P., Kim, C. C., Jan, L. Y. & Jan, Y. N. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons. Neuron 63, 788-802, doi:10.1016/j.neuron.2009.08.006 (2009). 49 Song, Y. et al. Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam. Genes & development 26, 1612-1625, doi:10.1101/gad.193243.112 (2012). 50 Jiang, N., Soba, P., Parker, E., Kim, C. C. & Parrish, J. Z. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth. Development 141, 2657-2668, doi:10.1242/dev.107573 (2014). 51 Li, Y. & Padgett, R. W. bantam is required for optic lobe development and glial cell proliferation. PloS one 7, e32910, doi:10.1371/journal.pone.0032910 (2012). 52 Newmark, P. A., Reddien, P. W., Cebria, F. & Sanchez Alvarado, A. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the United States of America 100 Suppl 1, 11861-11865, doi:10.1073/pnas.1834205100 (2003). 53 Enright, A. J. et al. MicroRNA targets in Drosophila. Genome biology 5, R1, doi:10.1186/gb-2003-5-1-r1 (2003). 54 Ryoo, H. D., Gorenc, T. & Steller, H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Developmental cell 7, 491-501, doi:10.1016/j.devcel.2004.08.019 (2004). 55 Almuedo-Castillo, M. et al. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling. PLoS genetics 10, e1004400, doi:10.1371/journal.pgen.1004400 (2014). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52155 | - |
| dc.description.abstract | MicroRNAs為長度約20-24 核苷酸的小片段非編碼核糖核酸,會與Argonaute蛋白質結合並且形成RNA誘導沉默複合物(miRISC),進行轉錄後的基因調控。在渦蟲的再生過程中,需要成體幹細胞(neoblasts)進行細胞增殖並且分化成各種型態的細胞來維持渦蟲身體的恆定性。研究指出抑制Argonaute的表現會造成渦蟲從頭部開始出現退化的現象,因此推測miRNAs可能會參與維持渦蟲的身體恆定性。在渦蟲再生時,一些特定的miRNAs大量表現於渦蟲再生組織,推測這些miRNAs具有調控渦蟲再生過程中成體幹細胞的功能。本研究著重在了解miRNA bantam-a 在渦蟲中的功能。實驗結果顯示bantam-a大量表現在渦蟲的眼點、中樞神經系統以及再生組織(blastema)。當bantam-a 被抑制時會干擾neoblasts進入到細胞週期中的M phase,以及後代細胞(progeny cell)的生成。長期抑制bantam-a的表現也會造成渦蟲頭部出現不對稱眼點的現象。顯示在neoblasts的細胞複製、自我更新以及分化時都需要bantam-a的參與,以維持渦蟲的組織恆定性。綜合本研究結果,我們證實bantam-a在渦蟲的組織恆定性、成體幹細胞的增生及分化扮演重要的角色。bantam-a會抑制目標基因的表現,並可能透過此機制調控渦蟲的再生。 | zh_TW |
| dc.description.abstract | MicroRNAs, the 20-24 nt small non-coding RNAs, are associated with Argonaute proteins and form miRNA-induced silencing complex (miRISC) to regulate gene expression at post-transcriptional level. Regeneration in planarian is mediated by adult stem cells, called neoblasts, which can proliferate and differentiate into almost all cell types for replacing the whole body. Our preliminary study showed that depletion of planarian Argonaute 2 (DjAgo2) results in a phenotype of severe degeneration, suggesting that miRNAs are required for tissue homeostasis in planarian. A certain population of miRNAs is highly expressed in regenerating tissues, implicates the potential roles of miRNAs in neoblasts during regeneration. In this study, I examined the roles of bantam-a miRNA in planarian. The expression of bantam-a is enriched on the eyespots, central nervous system, as well as in blastema during regeneration. Inhibition bantam-a with specific miRNA inhibitor results in deficiency of tissue homeostasis. This inhibition experiment also showed two phenomena: bantam-a inhibition perturbs neoblasts cell cycle before entering M phase, and alters the produce of progeny cells. In consequence, these results indicated that bantam-a indeed participates in tissue homeostasis, self-renewal of neoblasts and the differentiation process in planarian. Finally, validation of the predicted targets of bantam-a provides evidence to support our hypothesis for bantam-a regulated pathway, and these data also provide insights into the possible mechanisms that underlay the miRNA-mediated gene silencing in regeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:08:45Z (GMT). No. of bitstreams: 1 ntu-104-R02b21031-1.pdf: 3142514 bytes, checksum: 076335300c36d1023415b8cf94a4e723 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv 1. Introduction 1 1.1 Planarians and regeneration 1 1.2 Neoblasts in planarian 2 1.3 Tissue homeostasis 4 1.4 Planarian body patterning 5 1.5 MicroRNA biogenesis and function 6 1.6 bantam miRNA 9 2. Materials and Methods 11 2.1 Animals 11 2.2 miRNA inhibition experiments 11 2.3 Flow cytometry and Fluorescence-activated cell sorting 12 2.4 RNA isolation 12 2.5 Quantitative PCR 12 2.6 miRNA Quantitative PCR 14 2.7 RNA interference (RNAi) 14 2.8 Whole mount in situ hybridizations 15 2.9 Fluorescence in situ hybridization 16 2.10 Immunostaining with H3P 17 2.11 miRNA target prediction 17 3. Results 18 3.1 bantam-a is expressed at photoreceptors, central nervous system, and blastema 18 3.2 bantam-a expression is up-regulated in neoblasts and progeny cells during regeneration 19 3.3 bantam-a inhibition represses the levels of progeny marker genes Djp53 and Djagat3 20 3.4 Inhibition of bantam-a decreases the number of X2 cells 21 3.5 Inhibition of bantam-a blocks mitosis 21 3.6 The degenerated phenotype in long-term bantam-a inhibited planarians 22 3.7 Lethal effect of long-term bantam-a inhibition in planarian 23 3.8 bantam-a inhibition destructs the eyespots and CNS of planarian 24 3.9 Prediction of bantam-a target genes 24 3.10 DjfzA is the down-stream target of bantam-a 25 4. Discussion 27 4.1. The expression level of bantam-a is increased in neoblasts and progeny cells during regeneration 27 4.2. bantam-a is essential for neoblasts proliferation and differentiation 28 4.3. bantam-a is required for sensory neurons homeostasis 30 4.4. bantam-a might participate in the Wnt signaling pathway 30 4.5. Perspective 32 5. Reference 33 6. Figures 38 Figure 1 38 Figure 2 40 Figure 3 43 Figure 4 45 Figure 5 47 Figure 6 49 Figure 7 50 Figure 8 52 Figure 9 53 Figure 10 54 Figure 11 56 7. Table 57 Table 1 57 8. Supplementary data 58 Figure S1 58 Figure S2 61 Figure S3 62 Figure S4 63 Figure S5 64 Figure S6 65 Figure S7 66 Figure S8 67 | |
| dc.language.iso | en | |
| dc.subject | 渦蟲 | zh_TW |
| dc.subject | miRNA | zh_TW |
| dc.subject | bantam-a | zh_TW |
| dc.subject | 細胞增生 | zh_TW |
| dc.subject | 細胞分化 | zh_TW |
| dc.subject | 組織恆定性 | zh_TW |
| dc.subject | Planarian | en |
| dc.subject | bantam-a | en |
| dc.subject | miRNA | en |
| dc.subject | cell proliferation | en |
| dc.subject | differentiation | en |
| dc.subject | homeostasis | en |
| dc.title | 探討miRNA bantam-a在渦蟲再生與恆定性中扮演的角色 | zh_TW |
| dc.title | The Role of miRNA bantam-a in Planarian Regeneration and Homeostasis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳益群,郭典翰,蔡欣祐 | |
| dc.subject.keyword | miRNA,bantam-a,細胞增生,細胞分化,組織恆定性,渦蟲, | zh_TW |
| dc.subject.keyword | bantam-a,miRNA,cell proliferation,differentiation,homeostasis,Planarian, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
