請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52126完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁(Fang-Jen Lee) | |
| dc.contributor.author | Meng-Chen Tsai | en |
| dc.contributor.author | 蔡孟真 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:08:21Z | - |
| dc.date.available | 2020-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | 1. Kahn, R.A. and A.G. Gilman, The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. Journal of Biological Chemistry, 1986. 261(17): p. 7906-7911. 2. Gillingham, A.K. and S. Munro, The Small G Proteins of the Arf Family and Their Regulators. Annual Review of Cell and Developmental Biology, 2007. 23(1): p. 579-611. 3. Jackson, C.L. and S. Bouvet, Arfs at a Glance. Journal of Cell Science, 2014. 4. Goldberg, J., Structural Basis for Activation of ARF GTPase: Mechanisms of Guanine Nucleotide Exchange and GTP–Myristoyl Switching. Cell, 1998. 95(2): p. 237-248. 5. Liu, Y., R.A. Kahn, and J.H. Prestegard, Structure and Membrane Interaction of Myristoylated ARF1. Structure, 2009. 17(1): p. 79-87. 6. Liu, Y., R.A. Kahn, and J.H. Prestegard, Dynamic structure of membrane-anchored Arf[bull]GTP. Nat Struct Mol Biol, 2010. 17(7): p. 876-881. 7. Donaldson, J.G., et al., ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proceedings of the National Academy of Sciences, 1992. 89(14): p. 6408-6412. 8. Presley, J.F., et al., Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature, 2002. 417(6885): p. 187-193. 9. Ben-Tekaya, H., R.A. Kahn, and H.-P. Hauri, ADP Ribosylation Factors 1 and 4 and Group VIA Phospholipase A2 Regulate Morphology and Intraorganellar Traffic in the Endoplasmic Reticulum–Golgi Intermediate Compartment. Molecular Biology of the Cell, 2010. 21(23): p. 4130-4140. 10. Chun, J., et al., Characterization of Class I and II ADP-Ribosylation Factors (Arfs) in Live Cells: GDP-bound Class II Arfs Associate with the ER-Golgi Intermediate Compartment Independently of GBF1. Molecular Biology of the Cell, 2008. 19(8): p. 3488-3500. 11. Volpicelli-Daley, L.A., et al., Isoform-selective Effects of the Depletion of ADP-Ribosylation Factors 1–5 on Membrane Traffic. Molecular Biology of the Cell, 2005. 16(10): p. 4495-4508. 12. D'Souza-Schorey, C. and P. Chavrier, ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol, 2006. 7(5): p. 347-358. 13. Lin, C.-Y., et al., ARL4, an ARF-like Protein That Is Developmentally Regulated and Localized to Nuclei and Nucleoli. Journal of Biological Chemistry, 2000. 275(48): p. 37815-37823. 14. Lin, Y.-C., et al., ARL4A acts with GCC185 to modulate Golgi complex organization. Journal of Cell Science, 2011. 124(23): p. 4014-4026. 15. Patel, M., et al., The Arf Family GTPase Arl4A Complexes with ELMO Proteins to Promote Actin Cytoskeleton Remodeling and Reveals a Versatile Ras-binding Domain in the ELMO Proteins Family. The Journal of Biological Chemistry, 2011. 286(45): p. 38969-38979. 16. Lin, C.-Y., et al., A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. Journal of Cell Science, 2002. 115(23): p. 4433-4445. 17. Li, C.-C., et al., ARL4D Recruits Cytohesin-2/ARNO to Modulate Actin Remodeling. Molecular Biology of the Cell, 2007. 18(11): p. 4420-4437. 18. Honda, A., et al., Phosphatidylinositol 4-Phosphate 5-Kinase α Is a Downstream Effector of the Small G Protein ARF6 in Membrane Ruffle Formation. Cell, 1999. 99(5): p. 521-532. 19. Godi, A., et al., ARF mediates recruitment of PtdIns-4-OH kinase-[bgr] and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol, 1999. 1(5): p. 280-287. 20. Jones, D.H., et al., Type I Phosphatidylinositol 4-Phosphate 5-Kinase Directly Interacts with ADP-ribosylation Factor 1 and Is Responsible for Phosphatidylinositol 4,5-Bisphosphate Synthesis in the Golgi Compartment. Journal of Biological Chemistry, 2000. 275(18): p. 13962-13966. 21. Aikawa, Y. and T.F.J. Martin, ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. The Journal of Cell Biology, 2003. 162(4): p. 647-659. 22. Marillat, V., et al., Spatiotemporal expression patterns of slit and robo genes in the rat brain. The Journal of Comparative Neurology, 2002. 442(2): p. 130-155. 23. Kidd, T., et al., Roundabout Controls Axon Crossing of the CNS Midline and Defines a Novel Subfamily of Evolutionarily Conserved Guidance Receptors. Cell, 1998. 92(2): p. 205-215. 24. Liu, Z., et al., Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding. Molecular and Cellular Neuroscience, 2004. 26(2): p. 232-240. 25. Simpson, J.H., et al., Short-Range and Long-Range Guidance by Slit and Its Robo Receptors: Robo and Robo2 Play Distinct Roles in Midline Guidance. Neuron, 2000. 28(3): p. 753-766. 26. Wong, K., et al., Signal Transduction in Neuronal Migration. Cell. 107(2): p. 209-221. 27. Hu, H., et al., Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(12): p. 4613-4618. 28. Lundstrom, A., et al., Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Development, 2004. 18(17): p. 2161-2171. 29. Fan, X., et al., Slit Stimulation Recruits Dock and Pak to the Roundabout Receptor and Increases Rac Activity to Regulate Axon Repulsion at the CNS Midline. Neuron. 40(1): p. 113-127. 30. Round, J.E. and H. Sun, The adaptor protein Nck2 mediates Slit1-induced changes in cortical neuron morphology. Molecular and Cellular Neuroscience, 2011. 47(4): p. 265-273. 31. Yang, L. and G.J. Bashaw, Son of Sevenless Directly Links the Robo Receptor to Rac Activation to Control Axon Repulsion at the Midline. Neuron. 52(4): p. 595-607. 32. Bashaw, G.J., et al., Repulsive Axon Guidance: Abelson and Enabled Play Opposing Roles Downstream of the Roundabout Receptor. Cell, 2000. 101(7): p. 703-715. 33. Dallol, A., et al., SLIT2, a Human Homologue of the Drosophila Slit2 Gene, Has Tumor Suppressor Activity and Is Frequently Inactivated in Lung and Breast Cancers. Cancer Research, 2002. 62(20): p. 5874-5880. 34. Narayan, G., et al., Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Molecular Cancer, 2006. 5(1): p. 16. 35. Tseng, R.-C., et al., SLIT2 Attenuation during Lung Cancer Progression Deregulates β-Catenin and E-Cadherin and Associates with Poor Prognosis. Cancer Research, 2010. 70(2): p. 543-551. 36. Kim, H.K., et al., Slit2 Inhibits Growth and Metastasis of Fibrosarcoma and Squamous Cell Carcinoma. Neoplasia (New York, N.Y.), 2008. 10(12): p. 1411-1420. 37. Dai, C.F., et al., Expression and roles of Slit/Robo in human ovarian cancer. Histochemistry and Cell Biology, 2011. 135(5): p. 475-485. 38. Grone, J., et al., Robo1/Robo4: Differential expression of angiogenic markers in colorectal cancer. Oncology Reports, 2006. 15: p. 1437-1443. 39. Yang, X.-M., et al., Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis. Biochemical and biophysical research communications, 2010. 396(2): p. 571-577. 40. Wang, B., et al., Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell, 2003. 4(1): p. 19-29. 41. Chen, C.-H., Functional characterization of human ARF-like protein, ARL4A and its interacting protein. National Taiwan University, 2011. Master Thesis. 42. Keleman, K., et al., Comm Sorts Robo to Control Axon Guidance at the Drosophila Midline. Cell. 110(4): p. 415-427. 43. Christis, C. and S. Munro, The small G protein Arl1 directs the trans-Golgi–specific targeting of the Arf1 exchange factors BIG1 and BIG2. The Journal of Cell Biology, 2012. 196(3): p. 327-335. 44. James, S.R., et al., Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochemical Journal, 1996. 315(Pt 3): p. 709-713. 45. Edmead, C.E., et al., The pleckstrin homology domain of Gab-2 is required for optimal interleukin-3 signalsome-mediated responses. Cellular Signalling, 2006. 18(8): p. 1147-1155. 46. Garcia, P., et al., The pleckstrin homology domain of phospholipase C-.delta.1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry, 1995. 34(49): p. 16228-16234. 47. Shi, J., et al., Lactadherin binds selectively to membranes containing phosphatidyl-l-serine and increased curvature. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2004. 1667(1): p. 82-90. 48. Dickson, B.J. and G.F. Gilestro, Regulation of Commissural Axon Pathfinding by Slit and its Robo Receptors. Annual Review of Cell and Developmental Biology, 2006. 22(1): p. 651-675. 49. Rama, N., et al., Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization. Nat Med, 2015. 21(5): p. 483-491. 50. Kramer, S.G., et al., Switching Repulsion to Attraction: Changing Responses to Slit During Transition in Mesoderm Migration. Science, 2001. 292(5517): p. 737-740. 51. Prasad, A., et al., Slit Protein-mediated Inhibition of CXCR4-induced Chemotactic and Chemoinvasive Signaling Pathways in Breast Cancer Cells. Journal of Biological Chemistry, 2004. 279(10): p. 9115-9124. 52. Yuasa-Kawada, J., et al., Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(34): p. 14530-14535. 53. Schmid, B., et al., The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Research and Treatment, 2007. 106(3): p. 333-342. 54. Allen, W.E., et al., A Role for Cdc42 in Macrophage Chemotaxis. The Journal of Cell Biology, 1998. 141(5): p. 1147-1157. 55. Johnson, G.L. and R. Lapadat, Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases. Science, 2002. 298(5600): p. 1911-1912. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52126 | - |
| dc.description.abstract | 人類四腺嘌呤核苷二磷酸核醣化相似因子(ARL4A)可以幫助維持高基氏體結構以及調控肌動蛋白的組裝,我們先前的研究發現在發育的過程當中ARL4A主要表現在神經系統中。我們發現Robo1為一個新的ARL4A作用蛋白,Robo1為一個穿膜受器,其受質為Slit,兩者的作用可以調控神經軸突的生長方向。ARL4A藉由幫助Robo1和srGAP之間的作用來達到增加細胞移動力的目的,降低ARL4A或Robo1的表現會抑制細胞的移動力,而表現野生型的Robo1可以恢復細胞的移動力,但是不能和ARL4A作用的Robo1-A1及Robo1-A2兩個突變則不能恢復恢復細胞的移動力。因此,我們的實驗結果指出,ARL4A促進Robo1和srGAP的作用,以達到促進細胞移動的功用。 磷脂醯肌醇(phosphatidylinositide)在細胞中扮演重要的角色,磷脂醯肌醇可以作為生物膜上讓蛋白質結合的脂質,並可進一步促進訊息傳遞、細胞移動、胞吞作用等等的細胞反應。我們發現到ARL4A、ARL4C及ALR4D (ARL4s)可以幫助膜上磷脂醯肌醇的累積,為了找到ARL4s達成此目的下游蛋白,我們利用脂質囊浮力試驗(Liposome floatation assay)找到了一群會與ARL4s作用的蛋白質,並利用酵母雙雜交試驗證明我們找到的其中一個蛋白質Erk2會與ARL4s有作用。 | zh_TW |
| dc.description.abstract | ADP-ribosylation factor-like protein 4A (ARL4A) is a member of Arf family small G proteins. ARL4A functions in maintenance of Golgi structure and regulation of actin dynamics. ARL4 is developmentally regulated and expresses in neuron system. We identify a novel interacting protein of ARL4A, Robo1. Robo1 is a transmembrane receptor and, alone with its ligand Slit, involves in the axon neuron guidance. Both in vitro and in vivo assays are used to demonstrate direct interaction between ARL4A and Robo1. Moreover, ARL4A interacts with Robo1 to promote the recruitment of Slit-Robo GTPase activating proteins 1 (srGAP1), a downstream effector of Robo1. ARL4A-Robo signaling pathway facilitates cell migration. Knockdown of ARL4A or Robo1 attenuates cell motility, which can be rescued by expressing wildtype Robo1. However, expressing ARL4A-interaction defective Robo mutants does not rescue defect in cell motility. Our observation indicates ARL4A interacts with Robo1 to facilitate recruitment of srGAP1, which leads to inactivation of Cdc42 and promotion of cell migration. Phosphatidylinositol plays various roles to cell physiology. Phosphatidylinositol acts as dock site for proteins binding to facilitate cell signaling, migration, phagocytosis, and various cellular functions. We observe that ARL4A, ARL4C, and ARL4D (ARL4s) promote accumulation of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), phosphatidylinositol (3,4,5)-trisphosphate (PI(3, 4, 5)P3) and phosphatidylserine (PS). To identify the downstream effectors by which ARL4s modulates membrane lipid composition. We develop liposome floatation assay to seek for ARL4s effectors in the presence of lipid bilayer. We identify several proteins involve in lipid biogenesis, especially phosphatidylinositol 5-phosphate 4-kinase (PIP4K). We examine one of the obtained proteins, Erk2, for its interaction with ARL4s by yeast-two hybrid. Our results show the liposome floatation assay is capable of identify novel interacting proteins of ARL4s. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:08:21Z (GMT). No. of bitstreams: 1 ntu-104-R02448005-1.pdf: 78424916 bytes, checksum: fe521f4c33753807be69ef82b92ef81f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Table of Content i 論文審定書 vi 致謝 vii 中文摘要 viii Abstract ix Abbreviations xi 1. Introduction 1 1.1. The Arf family small GTPase 1 1.2. The ARL4s 3 1.3. Arfs in lipid biogenesis 4 1.4. Slit-Robo1 signaling pathway 5 2. Materials and Methods 9 3. Results 18 PART I- ARL4A couples with Robo1 to regulate cell migration 18 3.1. Identification of Robo1 as a novel ARL4A-interacting partner 18 3.2. ARL4A dose not regulate localization of Robo1 20 3.3. ARL4A and Robo1 modulate cell motility 21 3.4 Identification of ARL4A-interaction defective Robo1 mutants 22 3.5 Robo1-A1 and A2 mutants retain similar localization as wildtype Robo1 23 3.6. ARL4A-Robo1 signaling modulates cell motility 23 3.7. ARL4A-Robo modulates cell motility by facilitating binding of srGAP1 with Robo1 24 PART II- ARL4s modulate membrane lipid composition 25 3.8. ARL4s promote membrane recruitment of lipid markers 25 3.9. ARL4s-dependent recruitment of lipid markers is resistant to Wortmannin 26 3.10. Development of liposome floatation assay 27 3.11. Identification of novel interacting partners of ARL4D 29 4. Discussion 31 PART I- ARL4A couples with Robo1 to regulate cell migration 31 PART II- ARL4s modulate membrane lipid composition 35 5. Tables 37 Table 1. Oligonucleotides used in this thesis 37 Table 2. Percentage of cells with plasma membrane localizing lipid markers 38 Table 3. Known ARL4D interacting proteins identified in liposome floatation assay 39 Table 4. Lipid modifying enzymes identified in liposome floatation assay 40 Table 5. Proteins specifically bind to ARL4D-QL or ARL4D-TN 41 6. Figures 42 Figure 1. ARL4A co-localizes with Robo1 in Golgi complex and plasma membrane. 42 Figure 2. Loss of ARL4A or Robo1 does not affect the localization of each other. 43 Figure 3. Both ARL4A and Robo1 regulate cell motility. 45 Figure 4. Robo1-A1 and Robo1-A2 mutants lose their interactions with ARL4A but not other effector proteins. 46 Figure 5. Robo-A1 and Robo1-A2 mutants retain their colocalization with ARL4A. 48 Figure 6. ARL4A interacts with Robo to regulate cell motility. 49 Figure 7. ARL4A-Robo1 inactivates Cdc42 by recruiting srGAP1 to Robo1. 51 Figure 8. ARL4C colocalizes with lipid markers for PI(4, 5)P2, PI(3, 4, 5)P3, and PS. 52 Figure 9. ARL4s dependent recruitment of PI(4, 5)P2 and PI(3, 4, 5)P3 is resistant to Wortmannin. 53 Figure 10. Scheme of liposome floatation assay 54 Figure 11. Modification of suitable condition for liposome floatation assay. 55 Figure 12. Pak1 specifically binds ARL4A-loaded liposomes. 57 Figure 13. Identified proteins in liposome floatation assay 58 Figure 14. Erk2 interacts with ARL4A and ARL4D. 59 7. Appendix 60 Appendix 1. ARL4A interacts with Robo in vivo. 60 Appendix 2. Both ARL4A and Robo regulate cell motility. 61 Appendix 3. ARL4A interacts with Robo to regulate cell motility. 62 Appendix 4. ARL4A colocalizes with lipid markers for PI(4, 5)P2, PI(3, 4, 5)P3, and PS. 63 Appendix 5. ARL4D colocalizes with lipid markers for PI(4, 5)P2, PI(3, 4, 5)P3, and PS. 64 9. Reference 65 | |
| dc.language.iso | en | |
| dc.subject | 磷酸肌醇 | zh_TW |
| dc.subject | 細胞移動 | zh_TW |
| dc.subject | 腺嘌呤核?二磷酸核醣化相似因子 | zh_TW |
| dc.subject | Arl | en |
| dc.subject | liposome | en |
| dc.subject | phosphatidylinositide | en |
| dc.subject | Erk2 | en |
| dc.subject | Cdc42 | en |
| dc.subject | Robo | en |
| dc.subject | Arf | en |
| dc.title | 人類腺嘌呤核苷二磷酸核醣化相似因子四與其結合蛋白特性探討 | zh_TW |
| dc.title | Functional Characterization of human ARL4s and their interacting partners | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周祖述(Tzuu-Shuh Jou),黃佩欣(Pei-Hsin Huang),李秀香(Hsiu-Hsiang Lee),劉雅雯(Ya-Wen Liu) | |
| dc.subject.keyword | 腺嘌呤核?二磷酸核醣化相似因子,細胞移動,磷酸肌醇, | zh_TW |
| dc.subject.keyword | Arf,Arl,Robo,Cdc42,Erk2,phosphatidylinositide,liposome, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 76.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
