Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52121
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信銘(Hsin-Ming Lu)
dc.contributor.authorHsiang-Che Hsuen
dc.contributor.author徐祥哲zh_TW
dc.date.accessioned2021-06-15T16:08:17Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citationBahdanau, D., Cho, K., Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:.
Caruana, R. J. M. l. (1997). Multitask learning. 28(1), 41-75.
Charniak, E. (1996). Tree-bank grammars. Paper presented at the Proceedings of the National Conference on Artificial Intelligence.
Chen, H.-H., Tseng, Y.-H., Ng, V., Lu, X. (2016). Proceedings of the 3rd workshop on natural language processing techniques for educational applications (NLPTEA2016). Paper presented at the Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016).
Chen, P.-L., Wu, S.-H., Chen, L.-P., Yang, P.-C. (2016). CYUT-III system at Chinese grammatical error diagnosis task. Paper presented at the Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016).
Chen, P.-L., Wu, S.-H., Chen, L.-P., Yang, P.-C., Yang, R.-D. (2015). Chinese grammatical error diagnosis by conditional random fields. Paper presented at the Proceedings of The 2nd Workshop on Natural Language Processing Techniques for Educational Applications.
Chollampatt, S., Ng, H. T. (2018). A multilayer convolutional encoder-decoder neural network for grammatical error correction. Paper presented at the Thirty-Second AAAI Conference on Artificial Intelligence.
Cui, X., Zhang, B.-l. J. A. L. (2011). The Principles for Building the “International Corpus of Learner Chinese”. 2, 100-108.
Dahlmeier, D., Ng, H. T. (2012). Better evaluation for grammatical error correction. Paper presented at the Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. J. a. p. a. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and description. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
Forney, G. D. J. P. o. t. I. (1973). The viterbi algorithm. 61(3), 268-278.
Fu, K., Huang, J., Duan, Y. (2018a). Youdao’s Winning Solution to the NLPCC-2018 Task 2 Challenge: A Neural Machine Translation Approach to Chinese Grammatical Error Correction. In Natural Language Processing and Chinese Computing (pp. 341-350).
Fu, K., Huang, J., Duan, Y. (2018b). Youdao’s Winning Solution to the NLPCC-2018 Task 2 Challenge: A Neural Machine Translation Approach to Chinese Grammatical Error Correction. Proceedings of NLPCC-2018.
Ge, D., Li, J., Zhu, M. (2019). A Transformer-Based Semantic Parser for NLPCC-2019 Shared Task 2. Paper presented at the CCF International Conference on Natural Language Processing and Chinese Computing.
Huang, S., Wang, H. (2016). Bi-LSTM neural networks for Chinese grammatical error diagnosis. Paper presented at the Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016).
Junczys-Dowmunt, M., Grundkiewicz, R., Guha, S., Heafield, K. (2018). Approaching neural grammatical error correction as a low-resource machine translation task. arXiv preprint arXiv:.05940.
Jurafsky, D., Martin, J. H. (2000). Speech and language processing. In: Prentice Hall.
Kaneko, M., Komachi, M. J. a. p. a. (2019). Multi-Head Multi-Layer Attention to Deep Language Representations for Grammatical Error Detection.
Lafferty, J., McCallum, A., Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data.
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C. (2016). Neural architectures for named entity recognition. arXiv preprint arXiv:.01360.
Lee, L.-H., Chang, L.-P., Tseng, Y.-H. (2016). Developing learner corpus annotation for Chinese grammatical errors. Paper presented at the 2016 International Conference on Asian Language Processing (IALP).
Lee, L.-H., Yu, L.-C., Chang, L.-P. (2015). Overview of the NLP-TEA 2015 shared task for Chinese grammatical error diagnosis. Paper presented at the Proceedings of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications.
Lee, L.-H., Yu, L.-C., Lee, K.-C., Tseng, Y.-H., Chang, L.-P., Chen, H.-H. (2014). A sentence judgment system for grammatical error detection. Paper presented at the Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations.
Li, S., Zhao, J., Shi, G., Tan, Y., Xu, H., Chen, G., . . . Lin, Z. (2019). Chinese Grammatical Error Correction Based On Convolutional Sequence To Sequence Model. IEEE Access, 7, 72905-72913. doi:10.1109/access.2019.2917631
Lichtarge, J., Alberti, C., Kumar, S., Shazeer, N., Parmar, N. J. a. p. a. (2018). Weakly supervised grammatical error correction using iterative decoding.
Lin, C.-J., Chu, W.-C. (2015). A Study on Chinese Spelling Check Using Confusion Sets and N-gram Statistics. Paper presented at the International Journal of Computational Linguistics Chinese Language Processing, Volume 20, Number 1, June 2015-Special Issue on Chinese as a Foreign Language.
Ling, W., Dyer, C., Black, A. W., Trancoso, I. (2015). Two/too simple adaptations of word2vec for syntax problems. Paper presented at the Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., Bryant, C. (2014). The CoNLL-2014 shared task on grammatical error correction. Paper presented at the Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task.
Norris, J. R. (1998). Markov chains: Cambridge university press.
Peterson, J. L. J. C. o. t. A. (1980). Computer programs for detecting and correcting spelling errors. 23(12), 676-687.
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
Rao, G., Gong, Q., Zhang, B., Xun, E. (2018). Overview of NLPTEA-2018 share task chinese grammatical error diagnosis. Paper presented at the Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications.
Ren, H., Yang, L., Xun, E. (2018a). A sequence to sequence learning for chinese grammatical error correction. Paper presented at the CCF International Conference on Natural Language Processing and Chinese Computing.
Ren, H., Yang, L., Xun, E. (2018b). A Sequence To Sequence Learning For Chinese Grammatical Error Correction. In Natural Language Processing and Chinese Computing (pp. 401-410).
Sennrich, R., Haddow, B., Birch, A. (2015). Neural machine translation of rare words with subword units. arXiv preprint arXiv:.07909.
Sundermeyer, M., Schlüter, R., Ney, H. (2012). LSTM neural networks for language modeling. Paper presented at the Thirteenth annual conference of the international speech communication association.
Sutskever, I., Vinyals, O., Le, Q. (2014). Sequence to sequence learning with neural networks. Advances in NIPS.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all you need. Paper presented at the Advances in neural information processing systems.
Wu, S.-H., Liu, C.-L., Lee, L.-H. (2013). Chinese spelling check evaluation at SIGHAN Bake-off 2013. Paper presented at the Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing.
Yu, L.-C., Lee, L.-H., Chang, L.-P. (2014). Overview of grammatical error diagnosis for learning Chinese as a foreign language. Paper presented at the Proceedings of the 1st Workshop on Natural Language Processing Techniques for Educational Applications.
Yuan, Z., Briscoe, T. (2016). Grammatical error correction using neural machine translation. Paper presented at the Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Zeiler, M. D., Fergus, R. a. p. a. (2013). Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:.
Zhang, B.-l., Cui, X. J. L. T., Study, L. (2013). Design Concepts of “the Construction and Research of the Inter-language Corpus of Chinese from Global Learners”. 5, 27-34.
Zhang, S., Zheng, D., Hu, X., Yang, M. (2015). Bidirectional long short-term memory networks for relation classification. Paper presented at the Proceedings of the 29th Pacific Asia conference on language, information and computation.
Zhang, Y., Hu, Q., Liu, F., Gu, Y. (2018). CMMC-BDRC solution to the NLP-TEA-2018 Chinese grammatical error diagnosis task. Paper presented at the Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications.
Zhang, Y., Wallace, B. (2015). A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:.03820.
Zhao, W., Wang, L., Shen, K., Jia, R., Liu, J. J. a. p. a. (2019). Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data.
Zhao, Y., Jiang, N., Sun, W., Wan, X. (2018). Overview of the nlpcc 2018 shared task: Grammatical error correction. Paper presented at the CCF International Conference on Natural Language Processing and Chinese Computing.
Zhao, Z., Wang, H. (2020). MaskGEC: Improving Neural Grammatical Error Correction via Dynamic Masking. Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence.
Zheng, B., Che, W., Guo, J., Liu, T. (2016). Chinese grammatical error diagnosis with long short-term memory networks. Paper presented at the Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016).
Zhou, J., Li, C., Liu, H., Bao, Z., Xu, G., Li, L. (2018). Chinese grammatical error correction using statistical and neural models. Paper presented at the CCF International Conference on Natural Language Processing and Chinese Computing.
易蓉湘, 何克抗. (1997). 计算机汉语文稿校对系统. 计算机研究与发展, 34(5), 346-350.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52121-
dc.description.abstract中文文法校正 (Chinese Grammar Error Correction)主要用於檢測文章中句子與句子之間的用字遣詞是否符合一般所認同文法結構。在應用上除了偵測錯別字等顯而易見的錯誤外,也包含了去除以下四種錯誤情況:多餘字詞 (Redundant Words)、遺漏字詞 (Missing Words)、使用不合適的字詞 (Bad Words Selection)以及順序錯誤的字詞 (Disorder Words)。此方面的研究已發展近20年,但到了近期才開始採用深度學習的方式。本次研究將結合深度學習方法,並應深度學習中的Transformer模型於文法校正的問題上。實驗中我們分別使用Bidirectional encoder Representations from Transformers (BERT) 解決文法錯誤分類問題,以及Copy-Augmented Architecture解決正確語句生成問題。在訓練模型時,我們提出了自行設計的預訓練任務,並使用了自行嵌入文法錯誤的大型語料庫進行預訓練,接續使用了Natural Language Processing Techniques for Educational Applications 2014到2016年三屆比賽的資料做模型的微調與測試,最後依照比賽規定的評分方式(Accuracy and F1 score) 作為評分基礎。根據實驗結果顯示,我們的方法相較於其他相關方法而言,可以大幅提升預測效果。此外也會探討不同模型對此方法與其他深度學習方法之差別。zh_TW
dc.description.abstractChinese Grammar Error Correction (CGEC) is commonly used to detect whether the word sequence used in a sentence is consistent with the commonly accepted grammar. CGEC usually considers detection tasks such as typos, redundant word, missing words, word selection errors, and word ordering errors. While CGEC has been studied for nearly 20 years, few studies adopt deep learning in CGEC. In this thesis, we focus on two types of CGEC tasks—grammar error classification and correct sentence generation. To improve prediction performance in CGEC tasks, we propose to incorporate the Transformer, a deep learning natural language processing approach in our models. We tackle the grammar error classification task by the Bidirectional Encoder Representations from Transformers (BERT) and address the correct sentence generation task by the Copy-Augmented Architecture. We also modified the pretraining and finetuning process to further improve prediction performance. In the pretraining stage, we adopted a new task that predicts error types from inputs with injected errors created using large-scaled corpus including JingYong novel, Wiki Chinese corpus, and Taiwan Yahoo News from 2005 to 2011. In the finetuning stage, we adopted Natural Language Processing Techniques for Educational Applications (NLPTEA) 2014-2016 Shared Task data to finetune our models. According to the experiment results, the our pretrained BERT models outperformed other approaches proposed in shared tasks, and the Copy-Augmented Architecture performed better with more pretraining data. In conclusion, we found that the addition of a new pretraining task can significantly enhance model performance. When training with different data sizes in the pretraining stage, we found that the models can achieve the best performance with approximately 5 million simulated training sentences.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:08:17Z (GMT). No. of bitstreams: 1
U0001-0708202014232100.pdf: 3118274 bytes, checksum: cc0639b2bc10f5902ec80f8f6e562e40 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Chinese Grammar Error Correction Shared Tasks 4
2.1.1 SIGHAN 2013 Shared Task 4
2.1.2 NLPTEA 2014/2015 Shared Tasks 6
2.1.3 NLPTEA 2016/2018 Shared Tasks 7
2.1.4 NLPCC 2018 Shared Tasks 9
2.2 Rule-based and Statistic-based method 11
2.3 Advanced statistical method 12
2.3.1 Hidden Markov Model 13
2.3.2 Conditional Random Field 15
2.4 Neural-Based Method 17
2.4.1 LSTM 17
2.4.2 Bi-LSTM 18
2.4.3 BiLSTM-CRF 20
2.5 Recent work in CGEC problem 23
2.5.1 CNN-based Sequence to Sequence 23
2.5.2 Attention mechanism 26
2.5.3 Transformer 29
2.5.4 Transformer in GEC problem 33
Chapter 3 Methodology 37
3.1 Task 1: Chinese grammar error classification 37
3.1.1 Model architecture 38
3.1.2 Pretraining design 39
3.1.3 Finetuning method 41
3.1.4 Model comparison 41
3.1.5 Model evaluation 43
3.2 Task 2: Grammatically correction sentence generating 45
3.2.1 Model pipeline 45
3.2.2 Pretraining method 47
3.2.3 Chinese version improvements 48
3.2.4 Model comparison 49
3.2.5 Model evaluation 50
Chapter 4 Experiments and Results 54
4.1 Data and Resource 54
4.1.1 Pretraining stage 54
4.1.2 Finetuning stage 55
4.2 Experiment design 56
4.2.1 Task 1 57
4.2.2 Task 2 58
4.2.3 Result and Discussion 59
Chapter 5 Conclusions and Future Work 68
Reference List 71
dc.language.isoen
dc.subject自然語言處理zh_TW
dc.subject中文文法校正zh_TW
dc.subject深度學習zh_TW
dc.subjectChinese Grammar Error Correctionen
dc.subjectDeep Learningen
dc.subjectNature Language Processingen
dc.title基於深度學習方法之中文句法校正模型zh_TW
dc.titleDeep Learning-based Chinese Grammar Correctionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許耀文(Yao-Wen Hsu),蔡志豐(Chih-Feng Tsai)
dc.subject.keyword中文文法校正,深度學習,自然語言處理,zh_TW
dc.subject.keywordChinese Grammar Error Correction,Deep Learning,Nature Language Processing,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202002631
dc.rights.note有償授權
dc.date.accepted2020-08-10
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-0708202014232100.pdf
  未授權公開取用
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved