請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52104完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王奕翔(I-Hsiang Wang) | |
| dc.contributor.author | Li-An Jiang | en |
| dc.contributor.author | 江禮安 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:08:53Z | - |
| dc.date.available | 2015-08-25 | |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | [1] A. B. Carleial, A case where interference does not reduce capacity, IEEE Trans.
Inf. Theory, vol. IT-21, no. 5, pp. 569–570, Sep. 1975. [2] T. S. Han and K. Kobayashi, A new achievable rate region for the interference channel, IEEE Trans. Inf. Theory, vol. IT-27, no. 1, pp. 49–60, Jan. 1981. [3] V.S. Annapureddy and V.V. Veeravalli, Gaussian interference networks: Sum capacity in the low interference regime In IEEE International Symposium on Information Theory, Toronto, Canada, July 2008 [4] R. Etkin, D. Tse, and H. Wang, Gaussian interference channel capacity to within one bit, IEEE Trans. Inf. Theory, Feb. 2007, submitted for publication [5] Abbas El Gamal and Young-Han Kim Network Information Theory, Cambridge University Press, 2011. [6] M. Salehi, Capacity and coding for memories with real-time noisy defective information at the encoder and decoder Proc. Inst. Elec. Eng.—I, vol. 139, no. 2, pp. 113–117, Apr. 1992 [7] G. Caire and S. S. (Shitz), On the capacity of some channels with channel state information IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2007–2019, Jun. 1999 [8] V. Lau, Y. Liu, and T. Chen, Capacity of memoryless channels and block-fading channels with designable cardinality-constrained channel state feedback IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2038–2049, Sep. 2004. [9] T. Yoo and A. Goldsmith, Capacity and power allocation for fading MIMO channels with channel estimation error IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2203–2214, May 2006. [10] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005. [11] W. Yu, W. Rhee, S. Boyd, and J. Cioffi, Iterative water-filling for Gaussian vector multiple access channels IEEE Trans. Inform. Theory, Vol. 50, No. 1, pp.145-151, Jan. 2004. [12] N. Jindal, S. Jafar, S. Vishwanath, and A. Goldsmith, Sum power waterfilling for Gaussian broadcast channels in Proc. Asilomar Conf. on Signals, Systems and Computers, vol. 2, pp. 1518-1522, Nov. 2002. [13] S. Deng, T. Weber and A. Ahrens, Capacity optimizing power allocation in Interference Channels AEU International fournal of Electronics and Communications, Vo1.63, pp. 139-147, Feb. 2009. [14] J.-S. Pang, G. Scutari, F. Facchinei, and C. Wang, Distributed Power Allocation with Rate Constraints in Gaussian Parallel Interference Channels IEEE Transactions on Information Theory, vol. 54, no. 8, pp. 3471–3489, Aug. 2008 [15] Park, T., Jang, J., Shin, O. S., Lee, K. B. 2005. Transmit power allocation for a downlink two-user interference channel IEEE Communications Letters, 9(1), 13– 15. [16] Daniela Tuninetti, Gaussian Fading Interference Channels: Power Control, ”in Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, (Monterey, CA), October 2008. [17] Vaneet Aggarwal, A. Salman Avestimehr, and Ashutosh Sabharwal On Achieving Local View Capacity Via Maximal Independent Graph Scheduling, IEEE Trans. Inform. Theory, vol. 57, no. 5, pp. 2711 – 2729, May 2011 [18] Alireza Vahid, Vaneet Aggarwal, A. Salman Avestimehr, and Ashutosh Sabharwal Wireless Network Coding with Local Network Views: Coded Layer Scheduling, submitted to IEEE Transactions on Information Theory, June 2011. [19] Jong-Shi Pang, Gesualdo Sutari, Francisco Facchinei, Chaoxiong Wang Distributed Power Allocation with Rate Constraints in Gaussian Parallel Interference Channels Submitted to IEEE Transactions on Information Theory,2007 [20] Syed Ali Jafar, Maralle Jamal Fakhereddin, Degrees of Freedom for the MIMO Interference Channel,IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 7, JULY 2007. [21] Viveck R. Cadambe, and Syed Ali Jafar, Interference Alignment and Degrees of Freedom of the K-User Interference Channel, IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 8, AUGUST 2008. [22] R. Tresch and M. Guillaud, Cellular interference alignment with imperfect channel knowledge in Proc. IEEE Int. Conf. Commun., Dresden, Germany, Jun. 2009, pp. 1–5. [23] O. El Ayach and R. W. Heath, Jr.Interference alignment with analog channel state feedback IEEE Transactions on Communications, vol. 11, no. 2, pp. 626–636, Feb. 2012. [24] Hyun Jong Yang, Won-Yong Shin, Bang Chul Jung and Arogyaswami Paulraj Opportunistic Interference Alignment for MIMO Interfering Multiple-Access Channels IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION [25] Hyun Jong Yang, Member, Won-Yong Shin,Bang Chul Jung, Changho Suh, Arogyaswami Paulraj Opportunistic Downlink Interference Alignment SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING [26] Yuya Saito, Yoshihisa Kishiyama, Anass Benjebbour, Takehiro Nakamura, Anxin Li and Kenichi Higuchi, Non-Orthogonal Multiple Access (NOMA) for Future Radio Access, Proc. of IEEE VTC spring 2013, June 2013. [27] H.F. Chong, M. Motani, H.K. Garg, and A. El Gamal. On The Han–Kobayashi Region for the Interference Channel. IEEE Trans. Inf. Theory, 54(7):3188–3195, 2008. [28] B. Suard, G. Xu, H. Liu, and T. Kailath, Uplink channel capacity of spacedivisionmultiple- access IEEE Trans. Inform. Theory, vol. 44, pp. 1468-1476, July 1998. [29] B. Hassibi and B. Hochwald, How much training is needed in multiple-antenna wireless links? IEEE Trans. Inform. Theory, vol. 49, pp. 951–963, Apr. 2003 [30] Andrea Goldsmith Wireless Communications, Cambridge University Press, 2005,P644 [31] T. Cover and J. Thomas, Elements of Information Theory 2nd edition. New York: Wiley, 2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52104 | - |
| dc.description.abstract | 在未來的無線通訊中,越來越多的小型基地台 (small cell) 將會被布建,故其互相干擾的機會將會提高。因此細胞間干擾 (inter-cell interference) 將會是未來無線通訊中的一大議題。從消息理論 (information theory) 的觀點,最簡單的互干擾連結是一個兩用戶的干擾通道模型 (2-user interference channel) 。在此模型下,目前Han-Kobayashi部分干擾消除法 (partial interference cancellation) 可以達到最好的傳輸率區域。而其需要完美 (精準且全盤) 的通道資訊 (perfect channel state information) 才能予以實踐,然而通道資訊通常會因通道估計誤差 (estimation error) 及所在位置 (locality) 導致其是不精準且局部性的。因此上述部分干擾消除法的效能將會無可避免的降低。
在此篇論文中,我們分析了在兩用戶干擾通道下,且有非完美通道資訊時,使用上述部分干擾消除法的系統效能。除此之外,我們利用局部性的通道資訊,於衰落 (fading) 干擾通道下提出一結合了部分干擾消除法優點的動態功率分配演算法 (dynamic power allocation algorithm)。並藉由模擬,展示出其跟傳統干擾處理方法相比,效能將會大幅的提升。我們並將此概念延伸到有細胞間干擾的上行通道行動通訊系統(uplink cellular system)。並搭配連續干擾消除 (successive interference cancellation) 及使用者排程 (user-scheduling),分析其效能。 | zh_TW |
| dc.description.abstract | For future wireless communication, more and more small cells will be established, there are more likely to interfere each other. Thus inter-cell interference management will be an important issue. From the point of view of information theory, the simplest interfering links can be modeled as a two-user interference channel (IC). For this IC model, a partial interference cancellation (PIC) method called Han-Kobayashi scheme can achieve the best-known achievable rate region. However, it needs perfect (precise and global) channel state information (CSI). For practical communication, CSI is usually imperfect (imprecise and local) due to channel estimation error and locality respectively. Hence the performance of the PIC scheme will be reduced inevitably.
For this thesis, we analyze the performance of two-user IC with the PIC scheme and imprecise CSI. In addition, we utilize the local CSI to propose a dynamic power allocation algorithm combined the PIC scheme for fading IC. It's shown that the performance is obviously enhanced compared with some traditional schemes. We further extend above result to uplink cellular with inter-cell interference, and combine the successive interference cancellation (SIC) and user-scheduling to analyze its performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:08:53Z (GMT). No. of bitstreams: 1 ntu-104-R02942098-1.pdf: 2804665 bytes, checksum: 7f9abe4a9129f54494c3706f38eb738f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Preface ii
Acknowledgement iii 中文ᄔ要iv Abstract v Contents vi List of Figures viii List of Tables x 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Literature Review 5 2.1 Partial Interference Cancellation (PIC) . . . . . . . . . . . . . . . . . . . 5 2.1.1 IC Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 PIC with Joint Decoding . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 PIC with Sequential Decoding . . . . . . . . . . . . . . . . . . . 8 2.1.4 Near-Optimal PIC . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Channel with State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Achievable Rate of Uplink with Multi-Antenna at BS . . . . . . . . . . . 15 2.3.1 Joint Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Independent Decoding . . . . . . . . . . . . . . . . . . . . . . . 16 3 Inter-cell Interference Management and Dynamic Power Allocation under Imperfect Channel State Information 17 3.1 Block Fading Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 IC with Imprecise CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 CSIR with Estimation Error . . . . . . . . . . . . . . . . . . . . 19 3.2.2 CSIT with Finite Feedback . . . . . . . . . . . . . . . . . . . . . 21 3.2.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 IC with Local CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 Achievable Rate Region with PIC and Imperfect CSI . . . . . . . 29 3.3.2 A Novel Dynamic Power Allocation Algorithm . . . . . . . . . . 31 3.3.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Interference Management of Uplink Cellular System with imperfect CSI 38 4.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Interference Management Schemes . . . . . . . . . . . . . . . . . . . . . 41 4.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Conclusion 48 A Appendix 49 A.1 Appendix A: Achievable Rate Region with PIC and Imperfect CSI . . . . 49 A.2 Appendix B: Optimal PIC for Symmetric IC . . . . . . . . . . . . . . . . 52 A.3 Appendix C: User Scheduling for 2-user IC in FDD mode . . . . . . . . . 55 Bibliography 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 干擾管理 | zh_TW |
| dc.subject | 功率分配 | zh_TW |
| dc.subject | 通道衰減 | zh_TW |
| dc.subject | 非完美通道資訊 | zh_TW |
| dc.subject | 局部通道資訊 | zh_TW |
| dc.subject | fading IC | en |
| dc.subject | interference management | en |
| dc.subject | local CSI | en |
| dc.subject | imperfect CSI | en |
| dc.subject | Power allocation | en |
| dc.title | 傳送端於非完美通道資訊下之細胞間干擾處理 | zh_TW |
| dc.title | Inter-cell Interference Management under Imperfect Channel State Information at Transmitter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林士駿(Shih-Chun Lin),黃昱智(Yu- Chih Huang) | |
| dc.subject.keyword | 功率分配,通道衰減,非完美通道資訊,局部通道資訊,干擾管理, | zh_TW |
| dc.subject.keyword | Power allocation,fading IC,imperfect CSI,local CSI,interference management, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
