Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃心豪(Hsin-Haou Huang)
dc.contributor.authorChiao-Yu Hsiaoen
dc.contributor.author蕭巧郁zh_TW
dc.date.accessioned2021-06-15T14:08:18Z-
dc.date.available2015-09-24
dc.date.copyright2015-09-24
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation[1] P. B. Koeneman, I. J. Busch-Vishniac, and K. L. Wood, 'Feasibility of micro power supplies for MEMS,' Microelectromechanical Systems, Journal of, vol. 6, pp. 355-362, 1997.
[2] 林順區, '二維結構之微型能量擷取器設計研製,' 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-100, 2009.
[3] L. Zuo, B. Scully, J. Shestani, and Y. Zhou, 'Design and characterization of an electromagnetic energy harvester for vehicle suspensions,' Smart Materials and Structures, vol. 19, p. 045003, 2010.
[4] S. Cheng and D. P. Arnold, 'A study of a multi-pole magnetic generator for low-frequency vibrational energy harvesting,' Journal of Micromechanics and Microengineering, vol. 20, p. 025015, 2010.
[5] P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka, and T. Bourouina, 'A batch-fabricated and electret-free silicon electrostatic vibration energy harvester,' Journal of Micromechanics and Microengineering, vol. 19, p. 115025, 2009.
[6] H. H. Huang and C. T. Sun, 'Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density,' New Journal of Physics, vol. 11, p. 013003, 2009.
[7] S.-C. Lin and W.-J. Wu, 'Piezoelectric micro energy harvesters based on stainless-steel substrates,' Smart Materials and Structures, vol. 22, p. 045016, 2013.
[8] G. W. Milton and J. R. Willis, 'On modifications of Newton's second law and linear continuum elastodynamics,' in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2007, pp. 855-880.
[9] H. Huang and C. Sun, 'Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young's modulus,' Journal of the Mechanics and Physics of Solids, vol. 59, pp. 2070-2081, 2011.
[10] H. Chen, H. Zeng, C. Ding, C. Luo, and X. Zhao, 'Double-negative acoustic metamaterial based on hollow steel tube meta-atom,' Journal of Applied Physics, vol. 113, p. 104902, 2013.
[11] Z. Liang and J. Li, 'Extreme acoustic metamaterial by coiling up space,' Physical review letters, vol. 108, p. 114301, 2012.
[12] H.-C. Zeng, C.-R. Luo, H.-J. Chen, S.-L. Zhai, C.-L. Ding, and X.-P. Zhao, 'Flute-model acoustic metamaterials with simultaneously negative bulk modulus and mass density,' Solid State Communications, vol. 173, pp. 14-18, 2013.
[13] J. T. Overvelde and K. Bertoldi, 'Relating pore shape to the non-linear response of periodic elastomeric structures,' Journal of the Mechanics and Physics of Solids, vol. 64, pp. 351-366, 2014.
[14] J. T. B. Overvelde, S. Shan, and K. Bertoldi, 'Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape,' Advanced Materials, vol. 24, pp. 2337-2342, 2012.
[15] V. G. Veselago, 'THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF IMG align= ABSMIDDLE alt= ϵ eps/IMG AND μ,' Physics-Uspekhi, vol. 10, pp. 509-514, 1968.
[16] J. B. Pendry, 'Negative refraction makes a perfect lens,' Physical review letters, vol. 85, p. 3966, 2000.
[17] L. Brillouin and M. Parodi, 'Propagation of waves in periodic structures,' ed: Dover, New York, 1953.
[18] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, et al., 'Locally resonant sonic materials,' Science, vol. 289, pp. 1734-1736, 2000.
[19] Z. Liu, C. Chan, and P. Sheng, 'Analytic model of phononic crystals with local resonances,' Physical Review B, vol. 71, p. 014103, 2005.
[20] 吳亮諭, '聲子晶體共振腔之分析與聲能能量擷取,' 成功大學機械工程學系學位論文, pp. 1-121, 2010.
[21] S. Yao, X. Zhou, and G. Hu, 'Experimental study on negative effective mass in a 1D mass–spring system,' New Journal of Physics, vol. 10, p. 043020, 2008.
[22] R. Zhu, G. Hu, M. Reynolds, and G. Huang, 'An elastic metamaterial beam for broadband vibration suppression,' in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, 2013, pp. 86952J-86952J-10.
[23] G. Huang and C. Sun, 'Band gaps in a multiresonator acoustic metamaterial,' Journal of Vibration and Acoustics, vol. 132, p. 031003, 2010.
[24] K. T. Tan, H. Huang, and C. Sun, 'Negative Effective Mass Density of Acoustic Metamaterial using Dual-Resonator Spring-Mass Model,' 2012.
[25] G. Gantzounis, M. Serra-Garcia, K. Homma, J. Mendoza, and C. Daraio, 'Granular metamaterials for vibration mitigation,' Journal of Applied Physics, vol. 114, p. 093514, 2013.
[26] Z. Yang, H. Dai, N. Chan, G. Ma, and P. Sheng, 'Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,' Applied Physics Letters, vol. 96, p. 041906, 2010.
[27] W. G. Cady, 'Piezoelectricity,' 1946.
[28] T. Starner, 'Human-powered wearable computing,' IBM systems Journal, vol. 35, pp. 618-629, 1996.
[29] N. S. Shenck and J. A. Paradiso, 'Energy scavenging with shoe-mounted piezoelectrics,' IEEE micro, pp. 30-42, 2001.
[30] A. Bayrashev, W. P. Robbins, and B. Ziaie, 'Low frequency wireless powering of microsystems using piezoelectric–magnetostrictive laminate composites,' Sensors and Actuators A: Physical, vol. 114, pp. 244-249, 2004.
[31] H. W. Kim, S. Priya, K. Uchino, and R. E. Newnham, 'Piezoelectric energy harvesting under high pre-stressed cyclic vibrations,' Journal of Electroceramics, vol. 15, pp. 27-34, 2005.
[32] M. Ericka, D. Vasic, F. Costa, G. Poulin, and S. Tliba, 'Energy harvesting from vibration using a piezoelectric membrane,' in Journal de Physique IV (Proceedings), 2005, pp. 187-193.
[33] S. Kim, W. W. Clark, and Q.-M. Wang, 'Piezoelectric energy harvesting with a clamped circular plate: analysis,' Journal of intelligent material systems and structures, vol. 16, pp. 847-854, 2005.
[34] S. Kim, W. W. Clark, and Q.-M. Wang, 'Piezoelectric energy harvesting with a clamped circular plate: experimental study,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 855-863, 2005.
[35] S. Shahruz, 'Design of mechanical band-pass filters for energy scavenging,' Journal of Sound and Vibration, vol. 292, pp. 987-998, 2006.
[36] S. Shahruz, 'Design of mechanical band-pass filters with large frequency bands for energy scavenging,' Mechatronics, vol. 16, pp. 523-531, 2006.
[37] S. Shahruz, 'Design of mechanical band-pass filters for energy scavenging: multi-degree-of-freedom models,' Journal of Vibration and Control, vol. 14, pp. 753-768, 2008.
[38] 林蕙君, '串聯陣列式壓電振動子能量擷取系統之分析研究,' 臺灣大學應用力學研究所學位論文, pp. 1-90, 2012.
[39] 陳彥儒, '陣列式壓電能量擷取子之寬頻設計,' 臺灣大學應用力學研究所學位論文, pp. 1-81, 2013.
[40] M. Pozzi, M. S. Aung, M. Zhu, R. K. Jones, and J. Y. Goulermas, 'The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load,' Smart Materials and Structures, vol. 21, p. 075023, 2012.
[41] M. Pozzi and M. Zhu, 'Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation,' Smart Materials and Structures, vol. 20, p. 055007, 2011.
[42] M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, 'Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems,' Sensors and Actuators A: Physical, vol. 142, pp. 329-335, 2008.
[43] X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren, and L. Liu, 'A frequency adjustable vibration energy harvester,' Proceedings of PowerMEMS, pp. 245-248, 2008.
[44] V. R. Challa, M. Prasad, Y. Shi, and F. T. Fisher, 'A vibration energy harvesting device with bidirectional resonance frequency tunability,' Smart Materials and Structures, vol. 17, p. 015035, 2008.
[45] A. Erturk, J. Hoffmann, and D. Inman, 'A piezomagnetoelastic structure for broadband vibration energy harvesting,' Applied Physics Letters, vol. 94, p. 254102, 2009.
[46] J.-T. Lin and B. Alphenaar, 'Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever,' Journal of Intelligent Material Systems and Structures, vol. 21, pp. 1337-1341, 2010.
[47] J.-T. Lin, B. Lee, and B. Alphenaar, 'The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency,' Smart Materials and Structures, vol. 19, p. 045012, 2010.
[48] Y. Tadesse, S. Zhang, and S. Priya, 'Multimodal energy harvesting system: piezoelectric and electromagnetic,' Journal of Intelligent Material Systems and Structures, vol. 20, pp. 625-632, 2009.
[49] E. S. Leland and P. K. Wright, 'Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload,' Smart Materials and Structures, vol. 15, p. 1413, 2006.
[50] Y. Jeon, R. Sood, J.-H. Jeong, and S.-G. Kim, 'MEMS power generator with transverse mode thin film PZT,' Sensors and Actuators A: Physical, vol. 122, pp. 16-22, 2005.
[51] C. Bowen, H. Kim, P. Weaver, and S. Dunn, 'Piezoelectric and ferroelectric materials and structures for energy harvesting applications,' Energy & Environmental Science, vol. 7, pp. 25-44, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52095-
dc.description.abstract本研究結合超穎材料的局部共振特性與壓電材料的正壓電效應,設計可將振動能轉換為電能的超穎材料板,預期能提供微型能量擷取器的壓電共振子設計理念。
為探討加入壓電效應對超穎材料局部共振的影響,首先進行理論推導,最後提出具壓電效應的超穎材料板運動方程式。超穎材料板的實際運動分析又可分為有限元素模擬及實驗兩部分,首先透過電腦輔助分析軟體COMSOL進行模擬,設計多個不同特徵頻率之內質量共振單元,並將以上內質量單元利用不同排列順序、不同內質量單元數量等變數組合成具有局部共振特性的超穎材料板,在針對所設計之超穎材料板以結構力學模組分析該模型在承受負載時因結構局部共振所造成的振動現象,同時也利用壓電模組進行壓電輸出的模擬。實驗部分則利用激振器給予固定頻率之負載,針對單一種內質量單元所組成之單共振超穎材料板進行簡諧試驗,最後比較模擬與實驗之結果。
由於原先設計之超穎材料模型振動並未如預期,因此另外提出與原先單共振模型結構差異較大之雙共振及多共振超穎材料模型,再以Comsol的結構力學模組分析其局部共振的效果。
最後本研究成功設計出具有單共振效果、雙共振效果及多共振效果之超穎材料板,但因為所設計超穎材料板厚度略薄,使得本身超穎材料板模態也略在低頻區域,會影響所預期之振動結果。
zh_TW
dc.description.abstractIn this thesis, we combine local resonance characteristics of metamaterials and direct piezoelectric effect of piezoelectric material, design metamaterials sheet which can transform vibration energy into electrical energy. It expects to provide the design concept of the piezoelectric resonator of micro-energy harvesting.
To explore the local resonance influence for the metamaterial that add direct piezoelectric effect. First we derivate the theory, then make a motion eqation for Metamaterials plate which have direct piezoelectric effect. The analysis of actual motion can be divided into finite element analysis simulation and experiments in two parts. First we use computer-assisted analysis software “COMSOL” to simulate, design several different characteristic frequencies of resonance mass-in-mass, and use different sort order, different mass-in-mass unit quantity variable of above mass-in-mass unit to combination to have local resonance properties of metamaterials sheet, then base on the metamaterials sheet which we design, use structural mechanics module to analysis when the model under load cause phenomena of Vibration due to local resonance of structure, but also use piezoelectric modules to simulate piezoelectric output. Experimental parts use the loads which is given fixed-frequency by shaker, then base on consisting of a single mass-in-mass unit for a single resonant metamaterials plate to do simple harmonic test. Finally, compare the result for simulation and experimental.
Since metamaterials vibration of the original design was not as expected, it also presents double resonance and multiple resonance metamaterials models that are quite different with single resonance metamaterials models, then use Comsol’s solid machanics models analysis the consequent of local resonance.
Finally, this study successfully designed metamaterials plates which have single resonance, double resonance and multiple resonance effect, but because of the metamaterials designed itself are too thin, cause metamaterials sheets model type also slightly in the low frequency region , it will affect the vibration of the expected results.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:08:18Z (GMT). No. of bitstreams: 1
ntu-104-R02525024-1.pdf: 5161305 bytes, checksum: d7cb5eba3ecc78fd130ca6b62a4859be (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 xii
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧與壓電原理 4
1.2.1 超穎材料 4
1.2.2 壓電原理 8
1.2.3 微型能量擷取器 10
1.3 研究架構 15
第2章 超穎材料板理論與模型建構 16
2.1 超穎材料板理論 16
2.2 超穎材料板結構設計 19
2.2.1 超穎材料內質量單元 19
2.2.2 超穎材料板 20
2.3 數值模擬參數設定 23
2.3.1 材料參數與邊界條件 23
2.3.2 網格收斂性及求解器時間步階收斂性分析 24
第3章 有限元素模擬分析 25
3.1 單共振超穎材料板 25
3.1.1 負載與結構共振與否 25
3.1.1 不同負載振幅 34
3.1.2 不同內質量單元數量 38
3.2 雙共振超穎材料板 40
第4章 超穎材料板製程與實驗 42
4.1 製程設備 42
4.2 製程步驟 44
4.3 實驗架設 48
4.3.1 實驗流程設計 48
4.3.2 實驗量測 50
4.4 實驗結果 54
4.4.1 其他量測方法 54
4.5 小結 59
第5章 其他多共振模型有限元素模擬 60
5.1 雙共振模型 60
5.1.1 雙共振模型一 61
5.1.2 雙共振模型二 64
5.1.1 雙共振模型三 68
5.2 多共振模型 69
5.2.1 多共振模型一 69
5.2.2 多共振模型二 71
第6章 結論與建議 73
6.1 結論 73
6.2 建議 74
參考文獻 75
附錄一 80
dc.language.isozh-TW
dc.subject振動發電zh_TW
dc.subject超穎材料zh_TW
dc.subject局部共振zh_TW
dc.subject壓電效應zh_TW
dc.subjectmetamaterialen
dc.subjectpower generation by vibrationen
dc.subjectpiezoelectric effecten
dc.subjectlocal resonanceen
dc.title具壓電振動子之超穎材料板動態行為分析與應用zh_TW
dc.titleDynamic characteristic and application of a metamaterial plate with piezoelectric vibratorsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋家驥(Chia-Chi Sung),施文彬(Wen-Pin Shih),吳文中(Wen-Chung Wu)
dc.subject.keyword超穎材料,局部共振,壓電效應,振動發電,zh_TW
dc.subject.keywordmetamaterial,local resonance,piezoelectric effect,power generation by vibration,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved