請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52093完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭柏齡(Po-Ling Kuo) | |
| dc.contributor.author | Po-Cheng Wu | en |
| dc.contributor.author | 吳柏誠 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:08:10Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | 1. Mellman, I., G. Coukos, and G. Dranoff, Cancer immunotherapy comes of age. Nature, 2011. 480(7378): p. 480-9. 2. Chen, D.S. and I. Mellman, Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013. 39(1): p. 1-10. 3. Motz, G.T. and G. Coukos, Deciphering and reversing tumor immune suppression. Immunity, 2013. 39(1): p. 61-73. 4. Bagnato, A. and L. Rosano, The endothelin axis in cancer. Int J Biochem Cell Biol, 2008. 40(8): p. 1443-51. 5. Buckanovich, R.J., et al., Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med, 2008. 14(1): p. 28-36. 6. Salmon, H., et al., Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest, 2012. 122(3): p. 899-910. 7. Heldin, C.H., et al., High interstitial fluid pressure - An obstacle in cancer therapy. Nature Reviews Cancer, 2004. 4(10): p. 806-813. 8. Less, J.R., et al., Interstitial Hypertension in Human Tumors .4. Interstitial Hypertension in Human Breast and Colorectal Tumors. Cancer Research, 1992. 52(22): p. 6371-6374. 9. Boucher, Y., et al., Interstitial Hypertension in Superficial Metastatic Melanomas in Humans. Cancer Research, 1991. 51(24): p. 6691-6694. 10. Curti, B.D., et al., Interstitial Pressure of Subcutaneous Nodules in Melanoma and Lymphoma Patients - Changes during Treatment. Cancer Research, 1993. 53(10): p. 2204-2207. 11. Gutmann, R., et al., Interstitial Hypertension in Head and Neck Tumors in Patients - Correlation with Tumor Size. Cancer Research, 1992. 52(7): p. 1993-1995. 12. Boucher, Y., L.T. Baxter, and R.K. Jain, Interstitial Pressure-Gradients in Tissue-Isolated and Subcutaneous Tumors - Implications for Therapy. Cancer Research, 1990. 50(15): p. 4478-4484. 13. Jain, R.K., Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 2012. 64: p. 353-365. 14. Zaritskaya, L., et al., New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Review of Vaccines, 2010. 9(6): p. 601-616. 15. Bordignon, V., et al., Evaluation of antigen specific recognition and cell mediated cytotoxicity by a modified lysispot assay in a rat colon carcinoma model. Journal of Experimental Clinical Cancer Research, 2012. 31. 16. Brunner, K.T., et al., Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology, 1968. 14(2): p. 181-96. 17. Xia, Y. and G.M. Whitesides, Soft lithography. Annual review of materials science, 1998. 28(1): p. 153-184. 18. Fu, Y., et al., Nuclear deformation during breast cancer cell transmigration. Lab Chip, 2012. 12(19): p. 3774-8. 19. Lee, P.J., et al., Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs. Applied Physics Letters, 2005. 86(22). 20. Clay, T.M., et al., Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin Cancer Res, 2001. 7(5): p. 1127-35. 21. Ritter, A.T., et al., Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity, 2015. 42(5): p. 864-76. 22. Valignat, M.P., et al., T lymphocytes orient against the direction of fluid flow during LFA-1-mediated migration. Biophys J, 2013. 104(2): p. 322-31. 23. Dominguez, G.A., N.R. Anderson, and D.A. Hammer, The direction of migration of T-lymphocytes under flow depends upon which adhesion receptors are engaged. Integrative Biology, 2015. 7(3): p. 345-355. 24. Charras, G.T., et al., Non-equilibration of hydrostatic pressure in blebbing cells. Nature, 2005. 435(7040): p. 365-9. 25. Friedl, P. and K. Wolf, Plasticity of cell migration: a multiscale tuning model. J Cell Biol, 2010. 188(1): p. 11-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52093 | - |
| dc.description.abstract | 腫瘤抗原特異性之胞殺性T淋巴球媒介之抗癌免疫反應在癌症的免疫療法中扮演重要的角色。然而,雖然已有大量的研究顯示腫瘤組織會釋放化學物質以逃脫免疫系統的抗癌反應,但是腫瘤組織周圍緻密的膠原蛋白基質以及升高的組織間質液壓等物理性屏障對於胞殺性T淋巴球阻礙卻經常被忽略。在本研究中,我們發展了一個能夠模擬腫瘤組織微環境的微流道平台。我們使用此裝置研究了在物理性屏障存在的情況下胞殺性T淋巴球之細胞移行特性。此外,我們以量化的方法評估胞殺性T淋巴球在對於特異性目標及非特異性目標之抗癌免疫反應。 | zh_TW |
| dc.description.abstract | Tumour antigen-specific CD8+ cytotoxic T lymphocyte (CTL)-mediated killing of tumour cells plays a crucial role in cancer immunotherapy. However, while a multitude of chemical factors employed by cancers to escape from anticancer immunity are disclosed, little attention thus far has been paid to the physical barriers established by tumours in their interstitium such as dense collagenous matrix and high interstitial fluid pressure (IFP), which also poses a significant challenge to CTLs to successfully contact the targeting cells. In this study, we developed a platform which can mimic the microenvironment of solid tumors. And we used the device to investigate the transmigration characteristics of CTLs at the presence of the physical barriers and quantitatively evaluated the performance of CTL-mediated anti-cancer immune response when the cancer cells were specifically and non-specifically targeted. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:08:10Z (GMT). No. of bitstreams: 1 ntu-104-R01945036-1.pdf: 2135555 bytes, checksum: 76236c60c9c388acf75cb708bd7ba9dc (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii Content iv List of Figures v List of Tables v Chapter 1. Introduction 1 Chapter 2. Materials and Methods 4 2.1 Device design and operation principle 4 2.2 Fabrication of microfluidic system 7 2.2.1 Photolithography 7 2.2.2 Soft lithography 9 2.3 Hydrostatic pressure application and COMSOL simulation 10 2.4 Cell culture 11 2.5 Image acquisition 13 Chapter 3. Results and Discussions 14 3.1 The interstitium-mimicking microfluidic device 14 3.2 Example of CTL-mediated killing of tumor cells 17 3.3 Performance of CTL-mediated anticancer response 22 3.3.1 Transmigration of CTLs into cancer cell channel 23 3.3.2 Tumor-target specificity in CTL-mediated killing of cancer cells 25 3.4 Effects of elevated HP on CTL-mediated anticancer response 29 3.4.1 Simulation and measurement of the hydrostatic pressure 29 Chapter 4. Conclusions 34 References 36 | |
| dc.language.iso | zh-TW | |
| dc.subject | 癌症免疫療法 | zh_TW |
| dc.subject | 胞殺性T淋巴球 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 腫瘤 | zh_TW |
| dc.subject | 靜水壓 | zh_TW |
| dc.subject | cytotoxic T lymphocyte | en |
| dc.subject | cancer immunotherapy | en |
| dc.subject | hydrostatic pressure | en |
| dc.subject | tumor | en |
| dc.subject | microfluidics | en |
| dc.title | 以模擬腫瘤間質組織之微流道平台評估胞殺性T淋巴球之抗癌作用 | zh_TW |
| dc.title | Tumor interstitium-mimicking platform for evaluation of cytotoxic T lymphocyte-mediated anticancer response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳淑靜(Shu-Ching Chen),趙本秀(Pen-hsiu Grace Chao),黃念祖(Nien-Tsu Huang) | |
| dc.subject.keyword | 胞殺性T淋巴球,微流道,腫瘤,靜水壓,癌症免疫療法, | zh_TW |
| dc.subject.keyword | cytotoxic T lymphocyte,microfluidics,tumor,hydrostatic pressure,cancer immunotherapy, | en |
| dc.relation.page | 37 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
