Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52082
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正宏
dc.contributor.authorNga-Chi Cheungen
dc.contributor.author張雅緻zh_TW
dc.date.accessioned2021-06-15T14:07:28Z-
dc.date.available2017-09-01
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation丹桂之助,1937。台北盆地的最深鑿井資料與其之考察。台灣地學記事,第8卷,第10-12 號,第126-131頁。
丹桂之助,1939。台北盆地之地質學考察。矢部教授還曆紀念論文集,第1卷,第371-380頁。
王執明、鄭穎敏、王源,1978。台北盆地之地質及沉積物研究。台灣礦業,第30卷,第4期,第350-380頁。
出口雄三,1911。台北附近的鑽井。地質學雜誌,第18卷,第216號,第260-262頁。
出口雄三,1912。大屯火山彙調查報告。臺灣總督府民政部殖產局,共102頁。
市川雄一,1931。台北圖幅說明書。台灣總督府殖產局,第583號,共29頁。
江政鴻,2002。嘉義中崙地區天然逸氣來源與自動化監測結果。國立臺灣大學地質科學研究所碩士論文。
江崇榮、張閔翔、林燕初、黃智昭、蘇泰維、陳瑞娥,2012。台北盆地之水文地質初探。大台北防災研討會。
汪中和,1995。嘉義地區地下水之碳、氫、氧同位素組成。行政院國家科學委員會專題研究計劃成果報告,45。
吳建民,1968。台北盆地地盤沉陷問題之研究(上)。水利,復刊4,第53-81頁。
李曉芬,2004。大屯火山區火山氣體成份及其冷凝水之氫氧同位素組成。國立台灣大學地質科學所碩士論文。
花井重次,1932。有關臺北盆地成因之考察。全國中等學校地理歷史科教員第9回協議會及臺灣南支旅行報告,第266-272頁。
牧山鶴彥,1933。臺灣北部的洪積層。地質學雜誌,第4卷,第47號,第398-400頁。
林其郁,2012。台灣地區水體中水氡之空間分布初探。國立臺灣大學理學院海洋科學研究所碩士論文。
林銘軒,2012。台北盆地水文地質架構及地層下陷之討論。國立臺灣大學地質科學系暨研究所碩士論文。
洪如江,1966。台北盆地各土層土壤之物理特性。國立臺灣大學工程學刊,第10期,第194-217頁。
陳文山、林朝宗、楊志成、費立沅、謝凱旋、龔慧敏、林佩儀、楊小青,2008。 晚期更新世以來台北盆地沉積環境與構造演化的時空演變。經濟部中央地質調查所彙刊,第21號,第61-106頁。
陳艾荻,2010。台灣溫泉水中溶解氣成分研究。國立臺灣大學理學院地質科學研究所碩士論文。
國立中興大學、國立臺灣大學、經濟部中央地質調查所,2007。地下水觀測網水文地質調查研究:地下水環境同位素與水質研究(1/2)。臺北市:經濟部中央地質調查所。
國立臺灣大學地質科學系,2004。地下水碳十四、氚及水質分析研究(1/3)。臺北市:經濟部中央地質調查所。
彭宗仁,2004。台灣地區地下水觀測網第3期93年度水文地質調查研究計畫,地下水穩定氫、氧同位素研究 (1/3)。經濟部中央地質調查所。
彭宗仁,2006。台灣地區地下水觀測網第3期95年度水文地質調查研究計畫,地下水穩定氫、氧同位素研究 (3/3)。經濟部中央地質調查所。
彭宗仁、劉聰桂,2008。台灣地區地下水觀測網第3 期97 年度水文地質調查研究計畫,地下水環境同位素與水質研究 (2/2)。經濟部中央地質調查所。
楊萬全,1972。台北盆地地下水蘊藏量與超抽情況之研究。台灣銀行季刊,第23卷,第4期,第235-253頁。
楊應塘,1975。台北盆地之地盤下陷。地質,第1卷,第2期,第49-71頁。
經濟部,2015。地下水補注地質敏感區劃定計畫書G0004臺北盆地(草案)。
經濟部中央地質調查所,2013。台北盆地水文地質特性。
經濟部中央地質調查所,2014。地下水水文地質與補注模式研究-補注區劃設與資源量評估(2/4)期末報告。
楊燦堯,2000。大屯火山群火山噴氣與溫泉氣之地球化學研究。內政部營建署陽明山國家公園管理處,臺北市。
楊燦堯、何孝恆、謝佩珊、劉念宗、陳于高、陳正宏,2003。大屯火山群火山氣體成份與來源之探討。國家公園學報,第13期,第127-156 頁。
鄧屬予,2006。台北盆地之地質研究。西太平洋地質科學,第6卷,第1-28頁。
鄭又珍,2014。宜蘭平原地下水之地球化學特徵。國立臺灣大學地質科學系暨研究所碩士論文。
賴典章,1999。臺北盆地地下地質與工程環境綜合調查研究計畫之緣起。經濟部中央地質調查所特刊,第11號,第1-5頁。
Ball T. K., D. G. Cameron, T. B. Colman and M. J. Brown. (1991) Radon and geology. Environmental Geochemistry and Health, 13(3): 148.
Barragan, R.M., V.M. Arellano, E. Portugal and N. Segovia. (2008) Effects of changes in reservoir thermodynamic conditions on 222Rn composition of discharged fluids: study for two wells at Los Azufres geothermal field (Mexico). Geofluids, 8: 252-262.
Burnett, W.C., J.E. Cable and D.R. Corbett. (2003) Radon tracing of submarine groundwater discharge in coastal environments. Lands and Marine Hydrogeology, 25-43.
Chen. C. T., J. C. Lee, Y. C. Chan, C. Y. Lu, and L. S. Y. Teng. (2014) Elucidating the geometry of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan, and the reactivation relationship with preexisting orogen structures. Tectonics, 33: 2400-2418.
Chen, K. C., B. S. Huang, W. G. Huang, J. H Wang, K. H. Kim, S. J. Lee, Y. C. Lai, S. J. Tsao, and C. H. Chen. (2010) A blind normal fault beneath the Taipei basin in northern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 21(3): 495-502.
Chung, Y. and W. C. Chang. (1996) Uranium and thorium isotopes in marine sediments off northeastern Taiwan. Marine Geology, 133: 89-102.
Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133: 1702-1703.
Darling, W. G. and H. Armannsson. (1989) Stable isotopic aspects of fluid flow in the Krafla, Namafijall and Theistareykir geothermal systems of northeast Iceland. Chemical Geology, 76: 197-213.
Einarsson, P., P. Theodorsson, A.R. Hjartardottir and G.I. Guojonsson. (2008) Radon changes associated with the earthquake in June 2000 in the South Iceland Seismic Zone. Pure and Applied Geophysics, 165: 63-74.
Etiope, G. and G. Martinelli. (2002) Migration of carrier and trace gases in the geosphere: an overview. Physics of the Earth and Planetary Interiors, 129: 185-204.
Farley, K. A. and E. Neroda. (1998) Noble gases in the Earth’s mantle. Annual Review of Earth and Planetary Sciences, 26: 189-218.
Fu, C. C., T. F. Yang, V. Walia and C.-H.Chen (2005) Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Chemical Journal, 39: 427-439.
Gat, J. R. (1980) The isotopes of hydrogen and oxygen in precipitation. In: Handbook of Environmental Isotope Geochemistry (Fritz, P. and J. Ch. Fontes (editor)), 1: 21-47.
Gonza´lez-Dı´ez, A., J. Soto, J. Go´mez-Arozamena, J. Bonachea, J.J. Martı´nez-Dı´az, J.A. Cuesta, I. Olague, J. Remondo, G. Ferna´ndez Maroto, J.R. Dı´az de Tera´n. (2009) Identification of latent faults using a radon test. Geomorphology, 110: 11-9.
Han, Y. L., M. C. Kuo, K. C. Fan, C. J. Chiang and Y. P. Lee. (2006) Radon distribution in groundwater of Taiwan. Hydrogeology Journal, 14: 173-179.
Hilton, D. R., J. Barling and G. E. Wheller. (1995) Effect of shallow-level contamination on the helium isotope systematic of ocean-island lavas. Nature, 373: 330-333.
Italiano, F., G. Martinelli and P. Plescia. (2008) CO2 degassing over seismic areas: the role of mechanochemical production at the study case of Central Apennines. Pure and Applied Geophysics, 165: 75-94.
Italiano, F., A. Sasmaz, G. Yuce and O.O. Okan. (2013) Thermal fluids along the East Anatolian Fault Zone (EAFZ): geochemical features and relationships with the tectonic setting. Chemical Geology, 339: 103-114.
Kennedy, B. M., Y. K. Kharaka, W. C. Evans, A. Ellwood, D. J. DePaolo, J. Thordsen, G. Ambats, R. H. Mariner. (1997) Mantle Fluids in the San Andreas Fault System, California. Science, 278: 1278-1281
Kluge, T., J. Ilmberger, C. Rohden and W. Aeschbach-Hertig. (2007) Tracing and quantifying groundwater inflow into lakes using a simple method for radon-222 analysis. Hydrology and Earth System Sciences, 11: 1621-31.
Ku, H. W., Y. G. Chen, P. S. Chan, H. C. Liu and C. C. Lin. (2007) Paleo-environmental evolution as revealed by analysis of organic carbon and nitrogen: A case of coastal Taipei Basin in Northern Taiwan. Geochemical Journal, 41: 111-120.
Lee, K. S., D. B. Wenner and I. Lee. (1999) Using H- and O-isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island, Korea. Journal of Hydrology, 222: 65-74.
Lin, C. H., K. I. Konstantinou, W. T. Liang, H. C. Pu, Y. M. Lin, S. H. You and Y. P. Huang. (2005) Preliminary analysis of volcanoseismic signals recorded at the Tatun Volcano Group, northern Taiwan. Geophysical Research Letters, 32(10).
Lin, S. B. and C.-H. Chen (2000) Variations of lithologic characters and clay mineral compositions of sediments in the Taipei Basin. Journal of the Geological Society of China, 43(2): 311-332.
Lis, G., L. I. Wassenaar, and M. J. Hendry. (2008) High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Analytical Chemistry, 80: 287-293.
Lupton, J. E. (1983) Terrestrial inert gases: isotopes tracer studies and clues to primordial components in the mantle. Annual Review of Earth Planetary Sciences, 11: 371-414.
Notsu, K., S. Nakai, G. Igarashi, J. Ishibashi, T. Mori, M. Suzuki and H. Wakita. (2001) Spatial distribution and temporal variation of 3He/4He in hot spring gas released from Unzen volcanic area, Japan. Journal of Volcanology and Geothermeral Research, 111: 89-98.
Onishchenko, A., M. Zhukovsky, N. Veselinovic and Z. S. Zunic. (2010) Radium-226 concentration in spring water sampled in high radon regions. Applied Radiation and Isotopes, 68(4-5): 825-827.
Ozima, M. and F. A. Podosek. (2002) Noble Gas Geochemistry.Second edition. Cambridge University Press, Cambridge, 286 pp.
Porcelli, D., C. J. Ballentine and R. Wieler. (2002) An overview of noble gas-geochemistry and cosmochemistry. Noble Gases in Geochemistry and Cosmochemistry (Porcelli, D. et al., editors.), Reviews in Mineralogy and Geochemistry, 47(1):1-19.
Poreda, R. J., A. W. A. Jeffery, I. R. Kaplan and H. Craig. (1988) Magmatic helium in subduction-zone natural gases. Chemical Geology, 71: 199-210.
Roba, C. A., V. Codrea, M. Moldovan, C. Baciu and C. Cosma. (2010) Radon and radium content of some cold and thermal aquifers from Bihor County (northwestern Romania). Geofluids, 10(4): 571-585.
Ramola, R. C., A. S. Sndhu, S. Singh and H. S. Virk. (1989) Geochemical exploration of uranium using radon measurement techniques. Nuclear Geophysics, 3: 57-69.
Ramola, R. C., V.M. Choubey, M.S. Negi, Y. Prasad and G. Prasad. (2008) Radon occurrence in soil-gas and groundwater around an active landslide. Radiation Measurements, 43: 98-101.
Sakai, H. and O. Matsubaya. (1977) Stable isotopic studies of Japanese geothermal system. Geothermics, 5(1-4): 97-124.
Sanjo, K. (1991) Isotope hydrology of Mt. Tsukuba. Science Report of the Institute of Geoscience, University of Tsukuba, 12: 1-36.
Sano, Y. and H. Wakita. (1985) Geographical distribution of 3He/4He ratios in Japan: implications for arc tectonics and incipient magmatism. Journal of Geophyical Research, 90: 8729-8741.
Sano, Y., Y. Nakamura, and H. Wakita. (1984) Helium-3 emission related to volcanic activity. Science, 224: 150-151.
Schubert, M., K. Freyer, H.C. Treutler and H. Weiss. (2002) Using radon-222 in soil gas as an indicator of subsurface contamination by non-aqueousphase-liquids (NAPLs). Geofisica Internacional,41: 433-437.
Senturk, F., S. Bursali, Y. Omay, I. Ertan, S. Guler, H. Yalcin, and E. Onhan. (1970) Isotope techniques applied to groundwater movement in the Konia plain. In: Isotope Hydrology 1970. International Atomic Energy Agency, Vienna, p. 153-161.
Sturchio, N. C., J. L. Banner, C. M. Binz, L.B. Heraty and M. Musgrove. (2001) Radium geochemistry of groundwaters in Paleozoic carbonate aquifers, midcontinent, USA. Applied Geochemistry, 16(1): 109-122.
Smith, B. and A. Amonette. (2006) The environmental transport of radium and plutonium: a review. Institute for Energy and Environmental Research, Takoma Park, Maryland, p. 4–12.
Song, S. R., T. F. Yang, Y. H. Yeh, S. Tsao, and H. J. Lo. (2000) The Tatun Volcano Group is active or extinct? Journal of the Geological Society of China, 43(3): 521-534.
Szabo, Z. and O.S. Zapecza (1987) Relation between natural radionuclide activities and chemical constituents in ground water in the Newark Basin, New Jersey. In: Radon, Radium, and other radioactivity in ground water (Graves, B. (editor)), p. 283-308. Lewis Publishers, Chelsea, Michigan.
Szabo Z., V. T. dePaul, T.F. Kraemer and B. Parsa. (2005) Occurrence of radium-224, radium-226, and radium-228 in water of the unconfined Kirkwood–Cohansey aquifer system, southern New Jersey. U.S. Geological Survey Scientific Investigations Report, 2004-5224.
Teng, L. S., T. K. Liu, Y. G. Chen, P. M. Liew, C. T. Lee, H. C. Liu and C. H. Peng. (2004) Influence of Tahan River Capture over the Taipei Basin. Geographical Research, 41: 61-78.
United States – Environmental Protection Agency (2004) United States Environmental Protection Agency. Understanding Variation in Partition Coefficient, Kd, Values. Volume III: Review of Geochemistry and Available Kd Values for Americium, Arsenic, Curium, Iodine, Neptunium, Radium, and Technetium. Office of Air and Radiation. (EPA402-R-04-002C), p 5.58-5.66.
UNSCEAR. (2000) Sources and Effects of Ionizing Radiation. United Nations, New York.
Van Soest, M. C., D. R. Hilton and R. Kreulen. (1998) Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochimica et Cosmochimica Acta, 62: 3323-3335.
Van Soest, M. C., D. R. Hilton, C. G. Macpherson and D. P. Mattey. (2002) Resolving sediment subduction and crustal contamination in the Lesser Antilles island arc: A combined He-O-Sr isotope approach. Journal of Petrology, 43: 143-170.
Vinson, D. S., A. Vengosh, D. Hirschfeld and G.S. Dwyer. (2009) Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chemical Geology, 260(3-4): 159–71.
Wang, C. H. and T. R. Peng. (2001) Hydrogen and oxygen isotopic compositions of Taipei precipitation: 1990–1998. Western Pacific Earth Sciences, 1(4): 429-442.
Yang, T. F. (2000) The helium isotopic ratios of fumaroles from Tatun Volcano Group of Yangmingshan National Park, N. Taiwan. Journal of National Park 10, 73-94. (in Chinese with English abstract).
Yang, T. F., C.-H. Chen, R. L. Tien, S. R. Song and T. K. Liu. (2003a) Remnant magmatic activity in the Coastal Rang of East Taiwan after arc-continent collision: fission-track date and 3He/4He ratio evidence. Radiatation Measurements, 36: 343-349.
Yang, T. F., C. Y. Chou, C.-H. Chen, L. L Chyi and J.H. Jiang. (2003b) Exhalation of radon and its carrier gases in SW Taiwan. Radiation Measurements, 36: 425-429.
Yang, T. F., T. F. Lan, H. F. Lee, C. C. Fu, P. C. Chuang, C. H. Lo, C. H. Chen, C. T. A. Chen and C. S. Lee. (2005a) Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal, 39: 469-480.
Yang, T.F., Y. Sano and S.R. Song. (1999) 3He/4He ratio of fumaroles and bubbling gases of hot springs in Tatun volcano Group, North Taiwan. Il Nuovo Cimento, 22c: 281-286.
Yang, T.F., V. Walia, L.L. Chyi, C.C. Fu, C.C. Wang, C.-H. Chen, T.K. Liu, S.R. Song, C.Y. Lee and M. Lee. (2005b) Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiation Measurements, 40: 496-502.
Yuce, C., F. Italiano, W. D'Alessandro., T.H. Yalcin, D.U. Yasin, A.H. Gulbay, N. N. Ozyurt, B. Rojay, V. Karabacak, S. Bellomo, L. Brusca, T. Yang, C.C. Fu, C.W. Lai, A. Ozacar and V.Walia (2014) Origin and interactions of fluids circulating over the Amik Basin (Hatay, Turkey) and relationships with the hydrologic, geologic and tectonic settings. Chemical Geology, 388: 23-39.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52082-
dc.description.abstract本研究首次對台北盆地地下水之溶解氣體進行全面分析,並討論溶解氣體與地質環境的關係,以及溶解氣體的可能來源。水中溶解氣體主要可分成一般溶解氣與惰性氣體溶解氣,本研究關注之一般溶解氣為氧氣、氮氣、甲烷、二氧化碳等,惰性氣體溶解氣為氦氣、氖氣及氡氣。
台北盆地地下水觀測井共三十四口,本研究於2014年5月中及9月初期間,與洗井作業員配合採樣,收集地下水樣本,以進行水化學及溶解氣體成份分析。台北盆地地下水以Ca(HCO3)2及NaHCO3類型為主,部份來自盆地北部的樣本呈現NaCl類型,顯示有可能受到海水混染。地下水、地表水及雨水的氫氧同位素組成均落於區域天水線上,顯示主要受天水來源影響。盆地南部地下水與地表水類似,且深淺水井差別不大,顯示受到溪水影響。北部的深淺井則有同位素分層現象,其補注水源來源應不同。溶解無機碳的碳同位素分析結果顯示此研究區域溶解無機碳的產生方法以微生物相關作用為主。
至於溶解氣體方面,利用罐頂空間方法進行一般溶解氣分析,結果呈現三種特徵,分別為富集氮氣、含甲烷和含二氧化碳。氦同位素分析結果顯示盆地北部有明顯上部地函訊號(RA>2,其中RA為空氣中3He/4He的比值),其中5個井口的樣本RA = 3 - 4.2,很可能是台北盆地有記錄以來的最高值。額外的3He可能來自盆地北邊的大屯火山群,而鄰近的山腳斷層為這些地函流體提供了通道。現地測量的水中氡氣值介於0.2 – 20.7 kBq/m3,對於有深淺井的採樣點,深井的水氡值一般會較淺井的為高,顯示深層含水層比淺層含水層有更高的水氡值。
zh_TW
dc.description.abstractThis is the first comprehensive study for dissolved gases of groundwater in Taipei Basin, northern Taiwan. In addition to conventional water chemistry, the dissolved- gas compositions of groundwater from 34 observation wells have been systematically analyzed, aiming to know the relationship between dissolved gases and geological environment, and probable sources of the gases. Using the Piper plot, most of the groundwater samples can be classified as Ca(HCO3)2 and NaHCO3 types, although a few samples from the northern basin exhibit NaCl type characteristic which may reveal the mix with seawater. Isotopic compositions of hydrogen and oxygen for groundwater, surface water and meteoric water in Taipei Basin are aligned with Local Meteoric Water Line (LMWL), indicating a meteoric origin. The isotopic compositions of groundwater in the southern part of the basin have similar characteristics with surface water. However, isotopic stratifications occur in the observation wells from northern part of the basin. Accordingly, it reveals that recharge sources for groundwater samples in northern basin are different from the southern basin. The δ13C of dissolved inorganic carbon (DIC) indicates that microbial activities are dominant in the studied area. As for dissolved gases, three major components, CH4, N2 and CO2 are identified. The groundwater samples from northern part of the basin exhibit unexpectedly high helium isotopic ratios (RA>2, where RA is the 3He/4He ratio of air). Samples from five observation wells have RA = 3 - 4.2, probably the highest 3He/4He value ever reported in groundwater samples from this basin. The high RA ratios represent signals from mantle and the source of excess 3He may come from Tatun volcanic group (TVG), north to the Taipei Basin, with the nearby active Shanchiao Fault providing a pathway for such mantle fluids. Dissolved radon concentrations are in the range of 0.2 – 20.7 kBq/m3 and the deeper well usually exhibits a higher radon value than the shallow one from the same site which indicates that deep aquifer has a higher radon level than shallower one’s.en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:07:28Z (GMT). No. of bitstreams: 1
ntu-104-R02224215-1.pdf: 7678438 bytes, checksum: 7a6c2409e79a0ecc888eca1b9fab7dfc (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容簡介 1
第二章 研究區域 2
2.1 地質背景 2
2.2 水文地質背景 4
第三章 文獻回顧 10
3.1 地質研究 10
3.2 氫氧同位素研究 13
3.3 水中溶解氡氣研究 14
3.4 一般溶解氣研究 15
3.5 氦同位素研究 16
第四章 採樣地點與方法 18
4.1 採樣地點 18
4.2 採樣方法 20
第五章 研究分析及原理 22
5.1 水化學分析 22
5.1.1 陰陽離子 22
5.1.2 氫、氧同位素 23
5.1.3 溶解無機碳 24
5.2 溶解氣分析 25
5.2.1 一般溶解氣體 25
5.2.2 氦同位素 26
5.2.3 氡氣 27
第六章 結果與討論 29
6.1 水化學分析結果 29
6.1.1 陰陽離子分析 29
6.1.2 氫氧同位素組成分析 30
6.1.3 溶解無機碳分析 40
6.2 溶解氣分析結果 41
6.2.1 一般溶解氣成分討論 41
6.2.2 氦同位素探討 45
6.2.3 現場水氡分析 48
第七章 綜合討論 52
7.1 一般溶解氣成分與氦同位素分析結果比較 52
7.2 水中氡氣的來源及其與含水層的關係 54
7.3 同一地點深淺井分析結果比較 59
7.4 台北斷層附近觀測井之比較 82
7.5 額外3He的來源及遷移路徑 84
7.6 台北盆地地下水氣體來源模式 87
第八章 結論 89
參考文獻 90
附錄一 九月地下水樣本中陰陽離子成分(mg/l) 97
附錄二 九月樣品瓶中罐頂空間氣體濃度(mmol/L) 98
dc.language.isozh-TW
dc.title台北盆地地下水之地球化學特徵及其隱示zh_TW
dc.titleGeochemical Characteristics of Groundwater in Taipei Basin and their implicationsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉聰桂,陳文福,呂學諭
dc.subject.keyword溶解氣體,地下水,氦同位素比值,水中氡氣,氫氧同位素組成,zh_TW
dc.subject.keywordDissolved gas,groundwater,3He/4He ratio,Radon in water,Hydrogen and Oxygen isotopic compositions,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2015-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved