請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52056完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孔繁璐(Fan-Lu Kung) | |
| dc.contributor.author | Ting-Yu Jhou | en |
| dc.contributor.author | 周庭宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:05:47Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | 1 G. L. Wenk, 'Neuropathologic Changes in Alzheimer's Disease', The Journal of Clinical Psychiatry, 64 Suppl 9 (2003), 7-10. 2 J. Williamson, and S. LaRusse, 'Genetics and Genetic Counseling: Recommendations for Alzheimer’s Disease, Frontotemporal Dementia, and Creutzfeldt-Jakob Disease', Current Neurology and Neuroscience Reports, 4 (2004), 351-57. 3 M. Goedert, 'Tau Protein and Neurodegeneration', Seminars in Cell Developmental Biology, 15 (2004), 45-49. 4 Storey, and Cappai, 'The Amyloid Precursor Protein of Alzheimer’s Disease and the Aβ Peptide', Neuropathology and Applied Neurobiology, 25 (1999), 81-97. 5 K. Kosik, 'Tau Protein and Neurodegeneration', Molecular Neurobiology, 4 (1990), 171-79. 6 G. G. Glenner, and C. W. Wong, 'Alzheimer's Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein', Biochemical and Biophysical Research Communications, 120 (1984), 885-90. 7 B. Müller-Hill, and K. Beyreuther, 'Molecular Biology of Alzheimer's Disease', Annual Review of Biochemistry, 58 (1989), 287-307. 8 S.-i. Yoshikai, H. Sasaki, K. Doh-ura, H. Furuya, and Y. Sakaki, 'Genomic Organization of the Human Amyloid Beta-Protein Precursor Gene', Gene, 87 (1990), 257-63. 9 N. Kitaguchi, Y. Takahashi, Y. Tokushima, S. Shiojiri, and H. Ito, 'Novel Precursor of Alzheimer's Disease Amyloid Protein Shows Protease Inhibitory Activity', Nature, 331 (1988), 530-32. 10 J. Kang, H.-G. Lemaire, A. Unterbeck, J. M. Salbaum, C. L. Masters, K.-H. Grzeschik, G. Multhaup, K. Beyreuther, and B. Muller-Hill, 'The Precursor of Alzheimer's Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor', Nature, 325 (1987), 733-36. 11 H. A. Rohan de Silva, A. Jen, C. Wickenden, L.-S. Jen, S. L. Wilkinson, and A. J. Patel, 'Cell-Specific Expression of Β-Amyloid Precursor Protein Isoform Mrnas and Proteins in Neurons and Astrocytes', Molecular Brain Research, 47 (1997), 147-56. 12 R. L. Neve, E. A. Finch, and L. R. Dawes, 'Expression of the Alzheimer Amyloid Precursor Gene Transcripts in the Human Brain', Neuron, 1 (1988), 669-77. 13 S. A. Johnson, T. McNeill, B. Cordell, and C. E. Finch, 'Relation of Neuronal App-751/App-695 Mrna Ratio and Neuritic Plaque Density in Alzheimer's Disease', Science, 248 (1990), 854-57. 14 S. A. Johnson, G. M. Pasinetti, P. C. May, P. A. Ponte, B. Cordell, and C. E. Finch, 'Selective Reduction of Mrna for the Β-Amyloid Precursor Protein That Lacks a Kunitz-Type Protease Inhibitor Motif in Cortex from Alzheimer Brains', Experimental Neurology, 102 (1988), 264-68. 15 P. Preece, D. J. Virley, M. Costandi, R. Coombes, S. J. Moss, A. W. Mudge, E. Jazin, and N. J. Cairns, 'Amyloid Precursor Protein Mrna Levels in Alzheimer's Disease Brain', Molecular Brain Research, 122 (2004), 1-9. 16 L. Ho, K.-i. Fukuchi, and S. G. Younkin, 'The Alternatively Spliced Kunitz Protease Inhibitor Domain Alters Amyloid Β Protein Precursor Processing and Amyloid Β Protein Production in Cultured Cells', Journal of Biological Chemistry, 271 (1996), 30929-34. 17 C. Reinhard, S. S. Hébert, and B. De Strooper, 'The Amyloid-Beta Precursor Protein: Integrating Structure with Biological Function', The EMBO journal, 24 (2005), 3996-4006. 18 T. D. Stein, N. J. Anders, C. DeCarli, S. L. Chan, M. P. Mattson, and J. A. Johnson, 'Neutralization of Transthyretin Reverses the Neuroprotective Effects of Secreted Amyloid Precursor Protein (App) in Appsw Mice Resulting in Tau Phosphorylation and Loss of Hippocampal Neurons: Support for the Amyloid Hypothesis', The Journal of Neuroscience, 24 (2004), 7707-17. 19 Y. Gong, L. Chang, K. L. Viola, P. N. Lacor, M. P. Lambert, C. E. Finch, G. A. Krafft, and W. L. Klein, 'Alzheimer's Disease-Affected Brain: Presence of Oligomeric Aβ Ligands (Addls) Suggests a Molecular Basis for Reversible Memory Loss', Proceedings of the National Academy of Sciences, 100 (2003), 10417-22. 20 P. N. Lacor, M. C. Buniel, L. Chang, S. J. Fernandez, Y. Gong, K. L. Viola, M. P. Lambert, P. T. Velasco, E. H. Bigio, C. E. Finch, G. A. Krafft, and W. L. Klein, 'Synaptic Targeting by Alzheimer's-Related Amyloid Β Oligomers', The Journal of Neuroscience, 24 (2004), 10191-200. 21 X. Cao, and T. C. Südhof, 'A Transcriptively Active Complex of App with Fe65 and Histone Acetyltransferase Tip60', Science, 293 (2001), 115-20. 22 R. Pardossi-Piquard, A. Petit, T. Kawarai, C. Sunyach, C. Alves da Costa, B. Vincent, S. Ring, L. D’Adamio, J. Shen, U. Müller, P. S. G. Hyslop, and F. Checler, 'Presenilin-Dependent Transcriptional Control of the Aβ-Degrading Enzyme Neprilysin by Intracellular Domains of Βapp and Aplp', Neuron, 46 (2005), 541-54. 23 C. Haass, C. Kaether, G. Thinakaran, and S. Sisodia, 'Trafficking and Proteolytic Processing of App', Cold Spring Harbor Perspectives in Medicine, 2 (2012). 24 J. Walter, and C. Haass, 'Posttranslational Modifications of Amyloid Precursor Protein', in Alzheimer's Disease, ed. by NigelM Hooper (Humana Press, 2000), 149-68. 25 J. Walter, A. Capell, A. Y. Hung, H. Langen, M. Schnölzer, G. Thinakaran, S. S. Sisodia, D. J. Selkoe, and C. Haass, 'Ectodomain Phosphorylation of Β-Amyloid Precursor Protein at Two Distinct Cellular Locations', Journal of Biological Chemistry, 272 (1997), 1896-903. 26 P. Påhlsson, S. H. Shakin-Eshleman, and S. L. Spitalnik, 'N-Linked Glycosylation of Β-Amyloid Precursor Protein', Biochemical and Biophysical Research Communications, 189 (1992), 1667-73. 27 A. Weidemann, G. König, D. Bunke, P. Fischer, J. M. Salbaum, C. L. Masters, and K. Beyreuther, 'Identification, Biogenesis, and Localization of Precursors of Alzheimer's Disease A4 Amyloid Protein', Cell, 57 (1989), 115-26. 28 C. Liu, T. Rozmyslowicz, M. Stwora-Wojczyk, B. Wojczyk, and S. Spitalnik, 'Posttranslational Modifications of the Amyloid Precursor Protein', in Alzheimer's Disease, ed. by NigelM Hooper (Humana Press, 2000), 169-90. 29 S. S. Sisodia, 'Beta-Amyloid Precursor Protein Cleavage by a Membrane-Bound Protease', Proceedings of the National Academy of Sciences, 89 (1992), 6075-79. 30 R. Vassar, B. D. Bennett, S. Babu-Khan, S. Kahn, E. A. Mendiaz, P. Denis, D. B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M. A. Jarosinski, A. L. Biere, E. Curran, T. Burgess, J.-C. Louis, F. Collins, J. Treanor, G. Rogers, and M. Citron, 'Β-Secretase Cleavage of Alzheimer's Amyloid Precursor Protein by the Transmembrane Aspartic Protease Bace', Science, 286 (1999), 735-41. 31 P. Soba, S. Eggert, K. Wagner, H. Zentgraf, K. Siehl, S. Kreger, A. Löwer, A. Langer, G. Merdes, R. Paro, C. L. Masters, U. Müller, S. Kins, and K. Beyreuther, 'Homo- and Heterodimerization of App Family Members Promotes Intercellular Adhesion', The EMBO journal, 24 (2005), 3624-34. 32 S. Scheuermann, B. Hambsch, L. Hesse, J. Stumm, C. Schmidt, D. Beher, T. A. Bayer, K. Beyreuther, and G. Multhaup, 'Homodimerization of Amyloid Precursor Protein and Its Implication in the Amyloidogenic Pathway of Alzheimer's Disease', Journal of Biological Chemistry, 276 (2001), 33923-29. 33 D. Kaden, L.-M. Munter, M. Joshi, C. Treiber, C. Weise, T. Bethge, P. Voigt, M. Schaefer, M. Beyermann, B. Reif, and G. Multhaup, 'Homophilic Interactions of the Amyloid Precursor Protein (App) Ectodomain Are Regulated by the Loop Region and Affect Β-Secretase Cleavage of App', Journal of Biological Chemistry, 283 (2008), 7271-79. 34 S. Eggert, B. Midthune, B. Cottrell, and E. H. Koo, 'Induced Dimerization of the Amyloid Precursor Protein Leads to Decreased Amyloid-Β Protein Production', Journal of Biological Chemistry, 284 (2009), 28943-52. 35 Z. Wang, B. Wang, L. Yang, Q. Guo, N. Aithmitti, Z. Songyang, and H. Zheng, 'Presynaptic and Postsynaptic Interaction of the Amyloid Precursor Protein Promotes Peripheral and Central Synaptogenesis', The Journal of Neuroscience, 29 (2009), 10788-801. 36 Y. Wang, and Y. Ha, 'The X-Ray Structure of an Antiparallel Dimer of the Human Amyloid Precursor Protein E2 Domain', Molecular Cell, 15 (2004), 343-53. 37 S. Lee, Y. Xue, J. Hu, Y. Wang, X. Liu, B. Demeler, and Y. Ha, 'The E2 Domains of App and Aplp1 Share a Conserved Mode of Dimerization', Biochemistry, 50 (2011), 5453-64. 38 L. M. Munter, P. Voigt, A. Harmeier, D. Kaden, K. E. Gottschalk, C. Weise, R. Pipkorn, M. Schaefer, D. Langosch, and G. Multhaup, 'Gxxxg Motifs within the Amyloid Precursor Protein Transmembrane Sequence Are Critical for the Etiology of Abeta42', The EMBO journal, 26 (2007), 1702-12. 39 J. Rossjohn, R. Cappai, S. C. Feil, A. Henry, W. J. McKinstry, D. Galatis, L. Hesse, G. Multhaup, K. Beyreuther, C. L. Masters, and M. W. Parker, 'Crystal Structure of the N-Terminal, Growth Factor-Like Domain of Alzheimer Amyloid Precursor Protein', Nature Structural Molecular Biology, 6 (1999), 327-31. 40 M. Gralle, C. L. P. Oliveira, L. H. Guerreiro, W. J. McKinstry, D. Galatis, C. L. Masters, R. Cappai, M. W. Parker, C. H. I. Ramos, I. Torriani, and S. T. Ferreira, 'Solution Conformation and Heparin-Induced Dimerization of the Full-Length Extracellular Domain of the Human Amyloid Precursor Protein', Journal of Molecular Biology, 357 (2006), 493-508. 41 F. Baumkötter, K. Wagner, S. Eggert, K. Wild, and S. Kins, 'Structural Aspects and Physiological Consequences of App/Aplp Trans-Dimerization', Experimental Brain Research, 217 (2012), 389-95. 42 D. Kaden, P. Voigt, L.-M. Munter, K. D. Bobowski, M. Schaefer, and G. Multhaup, 'Subcellular Localization and Dimerization of Aplp1 Are Strikingly Different from App and Aplp2', Journal of Cell Science, 122 (2009), 368-77. 43 S. Isbert, K. Wagner, S. Eggert, A. Schweitzer, G. Multhaup, S. Weggen, S. Kins, and C. Pietrzik, 'App Dimer Formation Is Initiated in the Endoplasmic Reticulum and Differs between App Isoforms', Cellular and Molecular Life Sciences, 69 (2012), 1353-75. 44 M. Gralle, M. G. Botelho, and F. S. Wouters, 'Neuroprotective Secreted Amyloid Precursor Protein Acts by Disrupting Amyloid Precursor Protein Dimers', Journal of Biological Chemistry, 284 (2009), 15016-25. 45 P. Kienlen-Campard, B. Tasiaux, J. Van Hees, M. Li, S. Huysseune, T. Sato, J. Z. Fei, S. Aimoto, P. J. Courtoy, S. O. Smith, S. N. Constantinescu, and J.-N. Octave, 'Amyloidogenic Processing but Not Amyloid Precursor Protein (App) Intracellular C-Terminal Domain Production Requires a Precisely Oriented App Dimer Assembled by Transmembrane Gxxxg Motifs', Journal of Biological Chemistry, 283 (2008), 7733-44. 46 P. P. So, C. E. Khodr, C.-D. Chen, and C. R. Abraham, 'Comparable Dimerization Found in Wildtype and Familial Alzheimer's Disease Amyloid Precursor Protein Mutants', American Journal of Neurodegenerative Disease, 2 (2013), 15-28. 47 N. Ben Khalifa, D. Tyteca, C. Marinangeli, M. Depuydt, J.-F. Collet, P. J. Courtoy, J.-C. Renauld, S. Constantinescu, J.-N. Octave, and P. Kienlen-Campard, 'Structural Features of the Kpi Domain Control App Dimerization, Trafficking, and Processing', The FASEB Journal, 26 (2012), 855-67. 48 N. B. Khalifa, J. V. Hees, B. Tasiaux, S. Huysseune, S. O. Smith, S. N. Constantinescu, J.-N. Octave, and P. Kienlen-Campard, 'What Is the Role of Amyloid Precursor Protein Dimerization?', Cell Adhesion Migration, 4 (2010), 268-72. 49 H. J. Clarris, R. Cappai, D. Heffernan, K. Beyreuther, C. L. Masters, and D. H. Small, 'Identification of Heparin-Binding Domains in the Amyloid Precursor Protein of Alzheimer's Disease by Deletion Mutagenesis and Peptide Mapping', Journal of Neurochemistry, 68 (1997), 1164-72. 50 S. S. Mok, G. Sberna, D. Heffernan, R. Cappai, D. Galatis, H. J. Clarris, W. H. Sawyer, K. Beyreuther, C. L. Masters, and D. H. Small, 'Expression and Analysis of Heparin-Binding Regions of the Amyloid Precursor Protein of Alzheimer's Disease', FEBS Letters, 415 (1997), 303-07. 51 D. H. Small, V. Nurcombe, G. Reed, H. Clarris, R. Moir, K. Beyreuther, and C. L. Masters, 'A Heparin-Binding Domain in the Amyloid Protein Precursor of Alzheimer's Disease Is Involved in the Regulation of Neurite Outgrowth', The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 14 (1994), 2117-27. 52 S. O. Dahms, S. Hoefgen, D. Roeser, B. Schlott, K.-H. Gührs, and M. E. Than, 'Structure and Biochemical Analysis of the Heparin-Induced E1 Dimer of the Amyloid Precursor Protein', Proceedings of the National Academy of Sciences, 107 (2010), 5381-86. 53 S. Hoefgen, I. Coburger, D. Roeser, Y. Schaub, S. O. Dahms, and M. E. Than, 'Heparin Induced Dimerization of App Is Primarily Mediated by E1 and Regulated by Its Acidic Domain', Journal of Structural Biology, 187 (2014), 30-37. 54 D. W. Klaver, M. C. J. Wilce, R. Gasperini, C. Freeman, J. P. Juliano, C. Parish, L. Foa, M.-I. Aguilar, and D. H. Small, 'Glycosaminoglycan-Induced Activation of the Beta-Secretase (Bace1) of Alzheimer's Disease', Journal of Neurochemistry, 112 (2010), 1552-61. 55 M. Beckman, R. M. D. Holsinger, and D. H. Small, 'Heparin Activates Β-Secretase (Bace1) of Alzheimer's Disease and Increases Autocatalysis of the Enzyme†', Biochemistry, 45 (2006), 6703-14. 56 B. Leveugle, W. Ding, J. T. Durkin, S. Mistretta, J. Eisler, M. Matic, R. Siman, B. D. Greenberg, and H. M. Fillit, 'Heparin Promotes -Secretase Cleavage of the Alzheimer's Amyloid Precursor Protein', Neurochemistry International, 30 (1997), 543-48. 57 B. Leveugle, W. Ding, F. Laurence, M.-P. Dehouck, A. Scanameo, R. Cecchelli, and H. Fillit, 'Heparin Oligosaccharides That Pass the Blood-Brain Barrier Inhibit Β-Amyloid Precursor Protein Secretion and Heparin Binding to Β-Amyloid Peptide', Journal of Neurochemistry, 70 (1998), 736-44. 58 Z. Scholefield, E. A. Yates, G. Wayne, A. Amour, W. McDowell, and J. E. Turnbull, 'Heparan Sulfate Regulates Amyloid Precursor Protein Processing by Bace1, the Alzheimer's Β-Secretase', The Journal of Cell Biology, 163 (2003), 97-107. 59 L. Bergamaschini, E. Rossi, C. Storini, S. Pizzimenti, M. Distaso, C. Perego, A. De Luigi, C. Vergani, and M. Grazia De Simoni, 'Peripheral Treatment with Enoxaparin, a Low Molecular Weight Heparin, Reduces Plaques and Β-Amyloid Accumulation in a Mouse Model of Alzheimer's Disease', The Journal of Neuroscience, 24 (2004), 4181-86. 60 H. Cui, A. C. Hung, D. W. Klaver, T. Suzuki, C. Freeman, C. Narkowicz, G. A. Jacobson, and D. H. Small, 'Effects of Heparin and Enoxaparin on App Processing and Aβ Production in Primary Cortical Neurons from Tg2576 Mice', PLoS ONE, 6 (2011), e23007. 61 H. Cui, A. C. Hung, C. Freeman, C. Narkowicz, G. A. Jacobson, and D. H. Small, 'Size and Sulfation Are Critical for the Effect of Heparin on App Processing and Aβ Production', Journal of Neurochemistry, 123 (2012), 447-57. 62 W. E. Van Nostrand, A. H. Schmaier, J. S. Farrow, and D. D. Cunningham, 'Platelet Protease Nexin-2/Amyloid Beta-Protein Precursor. Possible Pathologic and Physiologic Functions', Annals of the New York Academy of Sciences, 640 (1991), 140-44. 63 R. Smith, D. Higuchi, and G. Broze, 'Platelet Coagulation Factor Xia-Inhibitor, a Form of Alzheimer Amyloid Precursor Protein', Science, 248 (1990), 1126-28. 64 A. H. Schmaier, L. D. Dahl, A. J. Rozemuller, R. A. Roos, S. L. Wagner, R. Chung, and W. E. Van Nostrand, 'Protease Nexin-2/Amyloid Beta Protein Precursor. A Tight-Binding Inhibitor of Coagulation Factor Ixa', The Journal of Clinical Investigation, 92 (1993), 2540-45. 65 J. M. Scandura, Y. Zhang, W. E. Van Nostrand, and P. N. Walsh, 'Progress Curve Analysis of the Kinetics with Which Blood Coagulation Factor Xia Is Inhibited by Protease Nexin-2†', Biochemistry, 36 (1997), 412-20. 66 Y. J. Shyu, H. Liu, X. Deng, and C.-D. Hu, 'Identification of New Fluorescent Protein Fragments for Bimolecular Fluorescence Complementation Analysis under Physiological Conditions', BioTechniques, 40 (2006), 61-66. 67 T. K. Kerppola, 'Bimolecular Fluorescence Complementation (Bifc) Analysis as a Probe of Protein Interactions in Living Cells', Annual Review of Biophysics, 37 (2008), 465-87. 68 C. Solà, F. J. García-Ladona, G. Mengod, A. Probst, P. Frey, and J. Palacios, 'Increased Levels of the Kunitz Protease Inhibitor-Containing Βapp Mrnas in Rat Brain Following Neurotoxic Damage', Molecular Brain Research, 17 (1993), 41-52. 69 H. S. Kim, S. H. Lee, S. S. Kim, Y. K. Kim, S. J. Jeong, J. Ma, D. H. Han, B. K. Cho, and Y. H. Suh, 'Post-Ischemic Changes in the Expression of Alzheimer's App Isoforms in Rat Cerebral Cortex', Neuroreport, 9 (1998), 533-37. 70 E. Dawkins, and D. H. Small, 'Insights into the Physiological Function of the Β-Amyloid Precursor Protein: Beyond Alzheimer's Disease', Journal of Neurochemistry, 129 (2014), 756-69. 71 N. Schonrock, M. Matamales, L. M. Ittner, and J. Götz, 'Microrna Networks Surrounding App and Amyloid-Β Metabolism — Implications for Alzheimer's Disease', Experimental Neurology, 235 (2012), 447-54. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52056 | - |
| dc.description.abstract | 阿茲海默氏症(Alzheimer’s disease,AD)是一種漸進式的神經退化疾病,其組織病理學上的特徵之一為APP蛋白經酵素循序切割水解後產生的Aβ在細胞間隙堆積的老年斑。過去已經有許多研究顯示APP dimerization會對APP processing產生影響,而也有許多研究顯示heparin及其類似物會促進APP的dimer產生並且對processing也有所影響,但影響的效果依然存在爭議。 在本研究中,我們使用BiFC系統觀察活細胞中APP dimerization的程度,比較APP不同isoforms:APP751和APP695,以及外加不同濃度之heparin或fondaparinux對dimerization造成之影響。從螢光顯微鏡觀察以及流式細胞儀分析的結果發現,在此系統下的APP產生之螢光強度和control組並無差異,顯示在本研究之實驗條件下,BiFC系統似乎並不適合用於觀測APP dimerization。另外,Western blot分析的結果發現,只有少部分APP自然形成之dimer及其他oligomer可以在含SDS的環境下穩定存在,因此利用DSS將dimer鏈結在一起,以便能直接用SDS-PAGE/Western blot觀測APP的聚合反應,結果顯示含有KPI domain的APP751比不含KPI domain的APP695更容易形成dimer。在加入heparin後,APP751和APP695形成dimer及oligomer的比例似乎都有些微的提高,增加的比例在兩種isoforms間並沒有顯著差異;而在加入fondaparinux後,對APP751的聚合反應沒有影響,至於APP695,dimer及oligomer則都有增加,增加的程度和heparin作用時相似。 APP processing的研究則是直接用Western blot分析APP不同水解路徑的產物C99與C83間的比例,結果發現APP751的C99/C83比例較APP695為低,顯示APP751似乎更傾向走non-amyloidogenic pathway。在加入heparin後,隨著濃度的上升,APP751和APP695的C99/C83比值都有下降的趨勢,減少的比例在兩種isoforms間並沒有差異;而在加入fondaparinux後,APP751和APP695的C99/C83比值雖然都有下降,但似乎和fondaparinux濃度的變化無關,且影響程度較heparin為弱。 此研究結果顯示dimerization會促使APP傾向進行non-amyloidogenic pathway。而KPI domain會促使APP dimerization,且造成APP對不同鏈長的heparin促使之dimerization反應不同,另外,heparin可能藉由多種不同的機轉影響APP processing。 | zh_TW |
| dc.description.abstract | Alzheimer’s disease (AD) is a progressive neurodegenerative disease. One histopathological feature of AD is the intercellular senile plaques (SPs) formed by aggregation of amyloid β (Aβ), which is derived from sequential proteolytic processing of amyloid precursor protein (APP). Many previous studies have indicated that APP dimerization may have an impact on APP processing. Furthermore, heparin and its analogs have been reported to induce APP dimerization and influence its processing. However, the exact effect of these polysaccharide is still controversial. In this study, a bimolecular fluorescence complementation (BiFC) system is used to measure the dimerization level of two isoforms of APP, APP751 and APP695, in the absence or presence of various concentrations of heparin or fondaparinux. Fluorescent microscopy and flow cytometry data revealed that the fluorescence signals obtained from APP-positive cells cannot be distinguished from the control groups. This result suggests that our BiFC system is not suitable to measure the dimerization of APP under the conditions of our experiment. Besides, the results of Western blotting analysis indicate that only a small portion of APP dimers and oligomers are stable in the presence of SDS. Therefore, disuccinimidyl suberate (DSS) is used to crosslink adjacent protein molecules to observe APP oligomerization directly by SDS-PAGE/Western blot analysis. Our data indicate that KPI domain-containing APP751 forms more dimers than KPI domain-lacking APP695. After heparin treatment, dimer/monomer and oligomer/monomer ratio in APP751 and APP695 are both slightly enhanced. There is no significant difference in the increase in ratio between these two isoforms. However, fondaparinux does not affect APP751 oligomerization, but increases the levels of APP695 dimer and oligomer to the same extent as heparin does. The preference of the proteolytic pathway of APP is represented by the ratio of the levels of proteolytic products of APP from different processing pathway, C99 to C83, determined by Western blot analysis. Our data indicates that the C99/C83 ratio of APP751 is lower than APP695. It suggests that APP751 favors the non-amyloidogenic processing. After heparin treatment, C99/C83 ratio of APP751 and APP695 are both declined with the increase of heparin concentration. There is no significant difference in the decrease in ratio between these two isoforms. On the other hand, fondaparinux treatment leads to an decrease in the C99/C83 ratio of APP751 and APP695, but to a lesser extent than heparin in a dose-independent manner. In conclusion, results from this study indicate that increased APP dimerization favors non-amyloidogenic processing. KPI domain promotes APP dimerization, and results in different response of heparin-induced dimerization of various lengths of heparin chain. On the other hand, heparin may affect APP processing by diverse mechanisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:05:47Z (GMT). No. of bitstreams: 1 ntu-104-R02423012-1.pdf: 2704452 bytes, checksum: 0189dc298b94e5356674938618e86b3a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………………………………………… I 致謝………………………………………………………………………………………………………………………………… II 中文摘要……………………………………………………………………………………………………………………… III 英文摘要………………………………………………………………………………………………………………………… V 英文縮寫表………………………………………………………………………………………………………………… VII 目錄………………………………………………………………………………………………………………………………… IX 緒論…………………………………………………………………………………………………………………………………… 1 研究目的………………………………………………………………………………………………………………………… 9 實驗材料與方法…………………………………………………………………………………………………………… 11 實驗結果………………………………………………………………………………………………………………………… 19 一、觀察APP751和APP695之dimerization及processing是否會因 為KPI domain的存在與否而有所差異……………………………………………………………… 19 二、觀察heparin和fondaparinux是否會影響APP dimerization 及processing,如有影響,其程度會不會因KPI domain的存在與否 而有所差異…………………………………………………………………………………………………………………… 21 討論…………………………………………………………………………………………………………………………………… 23 圖表說明………………………………………………………………………………………………………………………… 30 參考文獻………………………………………………………………………………………………………………………… 46 | |
| dc.language.iso | zh-TW | |
| dc.subject | fondaparinux | zh_TW |
| dc.subject | APP二聚體 | zh_TW |
| dc.subject | APP代謝 | zh_TW |
| dc.subject | KPI | zh_TW |
| dc.subject | 肝素 | zh_TW |
| dc.subject | fondaparinux | en |
| dc.subject | APP dimerization | en |
| dc.subject | APP processing | en |
| dc.subject | KPI | en |
| dc.subject | heparin | en |
| dc.title | 探討KPI與Heparin-binding Domains對APP之Homodimerization及代謝之影響 | zh_TW |
| dc.title | Effects of KPI and Heparin-binding Domains on APP Homodimerization and Processing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 董馨蓮(Shin-Lian Doong),許麗卿(Lih-Ching Hsu),忻凌偉(Ling-Wei Hsin) | |
| dc.subject.keyword | APP二聚體,APP代謝,KPI,肝素,fondaparinux, | zh_TW |
| dc.subject.keyword | APP dimerization,APP processing,KPI,heparin,fondaparinux, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 藥學專業學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
