請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52051完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明,陳璿宇 | |
| dc.contributor.author | Ya-Hsuan Chang | en |
| dc.contributor.author | 張雅媗 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:05:27Z | - |
| dc.date.available | 2020-08-25 | |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | 1 Chin, L. & Gray, J. W. Translating insights from the cancer genome into clinical practice. Nature 452, 553-563 (2008).
2 Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5, 845-856 (2005). 3 Kulasingam, V. & Diamandis, E. P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nature clinical practice. Oncology 5, 588-599 (2008). 4 Mehta, S. et al. Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol 2, 125-148 (2010). 5 Abaci, N. et al. Mitochondrial mutations in patients with congenital heart defects by next generation sequencing technology. Cardiol Young 25, 705-711 (2015). 6 Al-Allaf, F. A. et al. Next generation sequencing to identify novel genetic variants causative of autosomal dominant familial hypercholesterolemia associated with increased risk of coronary heart disease. Gene 565, 76-84 (2015). 7 Watson, C. M. et al. Rapid Detection of Rare Deleterious Variants by Next Generation Sequencing with Optional Microarray SNP Genotype Data. Hum Mutat (2015). 8 Hayashi, M. et al. Combining next-generation sequencing with microarray for transcriptome analysis in rainbow trout gonads. Molecular reproduction and development 79, 870-878 (2012). 9 Mirnezami, R., Nicholson, J. & Darzi, A. Preparing for precision medicine. N Engl J Med 366, 489-491 (2012). 10 Chen, H. Y. et al. R331W Missense Mutation of Oncogene YAP1 Is a Germline Risk Allele for Lung Adenocarcinoma With Medical Actionability. J Clin Oncol 33, 2303-2310 (2015). 11 Chen, J. et al. Gefitinib-induced hepatotoxicity in patients treated for non-small cell lung cancer. Onkologie 35, 509-513 (2012). 12 Chen, X. et al. Rechallenge with gefitinib following severe drug-induced hepatotoxicity in a patient with advanced non-small cell lung cancer: A case report and literature review. Oncol Lett 7, 878-880 (2014). 13 Brugger, W. & Thomas, M. EGFR-TKI resistant non-small cell lung cancer (NSCLC): New developments and implications for future treatment. Lung Cancer 77, 2-8 (2012). 14 Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N Engl J Med 359, 1367-1380 (2008). 15 Allison, D. B., Cui, X., Page, G. P. & Sabripour, M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7, 55-65 (2006). 16 Ackermann, M. & Strimmer, K. A general modular framework for gene set enrichment analysis. BMC bioinformatics 10, 47 (2009). 17 Nam, D. & Kim, S. Y. Gene-set approach for expression pattern analysis. Briefings in bioinformatics 9, 189-197 (2008). 18 Torre, L. A. et al. Global Cancer Statistics, 2012. Ca-Cancer J Clin 65, 87-108 (2015). 19 Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer:epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83, 584-594 (2008). 20 Chen, H. Y., Yu, S. L., Li, K. C. & Yang, P. C. Biomarkers and transcriptome profiling of lung cancer. Respirology 17, 620-626 (2012). 21 Singhal, S., Miller, D., Ramalingam, S. & Sun, S. Y. Gene expression profiling of non-small cell lung cancer. Lung Cancer 60, 313-324 (2008). 22 Kadara, H. et al. A five-gene and corresponding protein signature for stage-I lung adenocarcinoma prognosis. Clin Cancer Res 17, 1490-1501 (2011). 23 Shedden, K. et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14, 822-827 (2008). 24 Lindeman, N. I. et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol 8, 823-859 (2013). 25 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550 (2005). 26 Hung, J. H. Gene Set/Pathway enrichment analysis. Methods Mol Biol 939, 201-213 (2013). 27 Wan, Y. W., Beer, D. G. & Guo, N. L. Signaling pathway-based identification of extensive prognostic gene signatures for lung adenocarcinoma. Lung Cancer 76, 98-105 (2012). 28 Sudhindra, A., Ochoa, R. & Santos, E. S. Biomarkers, prediction, and prognosis in non-small-cell lung cancer: a platform for personalized treatment. Clin Lung Cancer 12, 360-368 (2011). 29 Lu, T. P., Chuang, E. Y. & Chen, J. J. Identification of reproducible gene expression signatures in lung adenocarcinoma. BMC bioinformatics 14, 371 (2013). 30 Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193 (2003). 31 Borenstein, M. Introduction to meta-analysis. (John Wiley & Sons, 2009). 32 DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control Clin Trials 7, 177-188 (1986). 33 Weiss, G. J. & Kingsley, C. Pathway targets to explore in the treatment of non-small cell lung cancer. J Thorac Oncol 3, 1342-1352 (2008). 34 Daraselia, N. et al. Molecular signature and pathway analysis of human primary squamous and adenocarcinoma lung cancers. Am J Cancer Res 2, 93-103 (2012). 35 Thomassen, M. et al. Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer. Clin Cancer Res 13, 5355-5360 (2007). 36 Dong, Y. D. et al. Expression and clinical significance of HMGB1 in human liver cancer: Knockdown inhibits tumor growth and metastasis in vitro and in vivo. Oncol Rep 29, 87-94 (2013). 37 Tesniere, A. et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15, 3-12 (2008). 38 Tang, D., Kang, R., Zeh, H. J., 3rd & Lotze, M. T. High-mobility group box 1 and cancer. Biochimica et biophysica acta 1799, 131-140 (2010). 39 Kostova, N., Zlateva, S., Ugrinova, I. & Pasheva, E. The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem 337, 251-258 (2010). 40 Hamer, M., Chida, Y. & Molloy, G. J. Psychological distress and cancer mortality. J Psychosom Res 66, 255-258 (2009). 41 Powe, D. G. et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1, 628-638 (2010). 42 Wu, F. & Yao, P. J. Clathrin-mediated endocytosis and Alzheimer's disease: an update. Ageing Res Rev 8, 147-149 (2009). 43 Cao, Y., Xiao, Y., Ravid, R. & Guan, Z. Z. Changed clathrin regulatory proteins in the brains of Alzheimer's disease patients and animal models. J Alzheimers Dis 22, 329-342 (2010). 44 Pepe, M. S. Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic, Prognostic, or Screening Marker. Am J Epidemiol 159, 882-890 (2004). 45 Pao, W. et al. Integration of molecular profiling into the lung cancer clinic. Clin Cancer Res 15, 5317-5322 (2009). 46 Chen, H. Y. et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356, 11-20 (2007). 47 Seike, M. et al. Use of a cytokine gene expression signature in lung adenocarcinoma and the surrounding tissue as a prognostic classifier. J Natl Cancer Inst 99, 1257-1269 (2007). 48 Larsen, J. E. et al. Gene expression signature predicts recurrence in lung adenocarcinoma. Clin Cancer Res 13, 2946-2954 (2007). 49 Hayes, D. N. et al. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J Clin Oncol 24, 5079-5090 (2006). 50 Howington, J. A., Blum, M. G., Chang, A. C., Balekian, A. A. & Murthy, S. C. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143, e278S-313S (2013). 51 Belson, M., Kingsley, B. & Holmes, A. Risk factors for acute leukemia in children: a review. Environ Health Perspect 115, 138-145 (2007). 52 Pui, C. H. & Evans, W. E. Treatment of acute lymphoblastic leukemia. N Engl J Med 354, 166-178 (2006). 53 Harvey, R. C. et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116, 4874-4884 (2010). 54 Gaynon, P. S. et al. Long-term results of the children's cancer group studies for childhood acute lymphoblastic leukemia 1983-2002: a Children's Oncology Group Report. Leukemia 24, 285-297 (2010). 55 Schultz, K. R. et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood 109, 926-935 (2007). 56 Szczepanek, J., Styczynski, J., Haus, O., Tretyn, A. & Wysocki, M. Relapse of acute lymphoblastic leukemia in children in the context of microarray analyses. Arch Immunol Ther Exp (Warsz) 59, 61-68 (2011). 57 Kang, H. et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115, 1394-1405 (2010). 58 Bhojwani, D., Moskowitz, N., Raetz, E. A. & Carroll, W. L. Potential of gene expression profiling in the management of childhood acute lymphoblastic leukemia. Paediatr Drugs 9, 149-156 (2007). 59 Flotho, C. et al. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 110, 1271-1277 (2007). 60 Martin, S. B. et al. Gene expression overlap affects karyotype prediction in pediatric acute lymphoblastic leukemia. Leukemia 21, 1341-1344 (2007). 61 Andersson, A. et al. Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia 21, 1198-1203 (2007). 62 Hogan, L. E. et al. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 118, 5218-5226 (2011). 63 Holleman, A. et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351, 533-542 (2004). 64 Yang, Y. L. et al. Expression and prognostic significance of the apoptotic genes BCL2L13, Livin, and CASP8AP2 in childhood acute lymphoblastic leukemia. Leuk Res 34, 18-23 (2010). 65 Bhojwani, D. et al. Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: A Children's Oncology Group Study [corrected]. J Clin Oncol 26, 4376-4384 (2008). 66 Zembutsu, H. et al. Prediction of risk of disease recurrence by genome-wide cDNA microarray analysis in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with imatinib-combined chemotherapy. Int J Oncol 31, 313-322 (2007). 67 Schadt, E. E. Molecular networks as sensors and drivers of common human diseases. Nature 461, 218-223 (2009). 68 Medina, I. et al. Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies. Nucleic Acids Res 37, W340-344 (2009). 69 Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116-5121 (2001). 70 B., E. & R., T. On testing the significance of sets of genes. Ann Appl Stat 1, 107-129 (2007). 71 Hotelling, H. The generalization of Student's ratio. Ann Math Stat 2, 360-378 (1931). 72 Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32-35 (1950). 73 Moos, P. J. et al. Identification of gene expression profiles that segregate patients with childhood leukemia. Clin Cancer Res 8, 3118-3130 (2002). 74 Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133-143 (2002). 75 Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353-357 (2006). 76 Armstrong, S. A. & Look, A. T. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23, 6306-6315 (2005). 77 Mullighan, C. G. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 122, 3407-3415 (2012). 78 Den Boer, M. L. et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10, 125-134. 79 Rahgozar, S. et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther 15, 35-41 (2014). 80 Mullauer, L. et al. Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutat Res 488, 211-231 (2001). 81 Mata, J. F. et al. Low mRNA Expression of the Apoptosis-Related Genes CASP3, CASP8, and FAS Is Associated With Low Induction Treatment Response in Childhood Acute Lymphoblastic Leukemia (ALL). Pediatr Blood Cancer 55, 100-107 (2010). 82 Bhojwani, D. et al. Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 108, 711-717 (2006). 83 Lee-Sherick, A. B., Linger, R. M., Gore, L., Keating, A. K. & Graham, D. K. Targeting paediatric acute lymphoblastic leukaemia: novel therapies currently in development. Br J Haematol 151, 295-311 (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52051 | - |
| dc.description.abstract | 基因體學、表觀體學、轉錄體學及蛋白質體學等不同層面的分子,在細胞生長、分化、發育以及在醫學上,皆扮演很重要的角色。現今在微陣列技術以及次世代定序儀等高通量技術的高度發展下,可用來偵測不同層面分子的變異情形,這些技術所產生的大量資料稱為體學資料。在這些優越的生物技術之下,一次的實驗中就可以測量到成千上萬個分子變異。
因腫瘤異質性的關係,即使具有相同的臨床病理特徵,而病人的治療反應或者臨床表徵會呈現不同的結果。故在本研究中,將以生物路徑的分式重新分析公開資料庫的微陣列資料,找尋與治療反應或者臨床表徵相關的基因印記,以增加治療反應或臨床表徵的預測正確率。在論文中,將上述方法應用在找尋肺腺癌及兒童高危險性急性B前體淋巴性白血病的基因印記,故包含兩個研究,分別為 1. 以生物路徑為基礎的基因印記預測預測肺腺癌的臨床表徵 2. 細胞凋亡路徑的基因印記預測兒童高危險性急性B前體淋巴性白血病的治療反應及臨床表徵。 研究一、以生物路徑為基礎的基因印記預測預測肺腺癌的臨床表徵 肺腺癌被診斷時大都為晚期且預後很差,且具有相同臨床病理特徵的病人卻有不同的臨床表徵。在過往研究顯示,肺癌生物標誌在不同的研究中有不一致的結果且很難有臨床的應用。因此,本研究上使用變異數倒數加權法,評估基因表現橫跨四組肺癌資料的風險比值,以增加統計檢定力,並利用生物路徑分析,以獲得生物路徑為基礎的基因印記來預測肺癌預後。研究結果顯示,2,418個基因表現與肺癌存活有關,其中21、22、及31個gene分別在HMGB1/RAGE訊息傳導路、β-腎上腺素感受器調控的ERK生物路徑及clathrin包覆水泡的循環路徑,在四組資料皆顯著地與肺腺癌的預後相關(對數等級檢定的p值皆小於 0.05)。我們合併此3個生物路徑標誌的危險分數而得到一個合併的生物路徑危險分數(CPBR),並使用另兩個獨立的資料組來驗證這3個生物路徑標誌及CPBR的正確性。在比較p值及風險比值下,結果顯示生物路徑標誌及CPBR在四組資料的結果比2,418個基因更具有一致性。因此生物路徑標誌較具有正確預測預後的能力。 研究二、細胞凋亡路徑的基因印記預測兒童高危險性急性B前體淋巴性白血病的治療反應及臨床表徵 急性淋巴性白血病是兒童常見的癌症且具有很好的治癒率,尤其是B前體型的淋巴性白血病。但其治療仍具有抗藥性並導致癌症復發與藥劑過量的問題。在本研究中,利用邏輯迴歸分析、微陣列顯著分析(SAM)及基因集分析等方法來找出與治療反應相關的生物路徑印記。結果顯示3,772個微陣列探針顯著地與治療反應相關,再進一步進行基因集生物路徑分析後,只有細胞凋亡生物路徑印記與治療反應有顯著的相關。將15個顯著差異表現基因組合成細胞凋亡生物路徑印記,預測治療反應,正確率為88%,此生物路徑印記再用另外兩組獨立資料來驗證。結果顯示,在第一組驗證資料中,細胞凋亡生物路徑印記顯著地與誘導性治療失敗時間相關(校正的風險比值為1.60,95%的信賴區間為1.13至2.27)。在第二組驗證資料中,細胞凋亡生物路徑印記顯著地與無癌症復發或死亡事件發生的存活時間相關(校正的風險比值為1.56,95%的信賴區間為1.13至2.16),且生物路徑印記也與整體存活期相關(校正的風險比值為1.74,95%的信賴區間為1.24至2.45)。細胞凋亡生物路徑印記不僅能用來預測臨床治療結果,且能提供病人治療處置的分子導引。 總體來說,藉由高通量技術得到基因表現的變異,可藉由生物路徑方式來尋找基因印記,不僅可用來預測疾病的預後、治療反應以及副作用,且本研究結果經由大規模的前瞻性研究驗證其預測能後,將具有提供臨床醫療上分子導引或標靶藥物研發的潛力。 | zh_TW |
| dc.description.abstract | Different molecular levels including genome, epigenome, transcriptome, and proteome play important roles in development, differentiation, growth etc. as well as in medicine. Up to date, high throughput technologies such as microarrays and next generation sequencers (NGS) can be used to measure variations of different molecular levels and above data was named “omic data”. It provided powerful tools to discovery huge amount of molecular changes at once.
Because of tumor heterogeneity, patients with the similar clinical pathology had the different treatment response and clinical outcome. Hence, in the studies, pathway-base analysis was used to reanalysis public datasets to explore signatures associated with treatment response or clinical outcome. These pathway-based signatures increased predict accuracy of treatment response or clinical outcome. In this dissertation, this methodology was used to find pathway-based signatures of lung adenocarcinoma and childhood high risk B-precursor acute lymphoblastic leukemia. Two studies were the 1st “Pathway-based gene signatures prediction clinical outcome of lung adenocarcinoma”, and 2nd “Apoptosis pathway signature for prediction of treatment response and clinical outcome in childhood high risk B-precursor acute lymphoblastic leukemia”. Study 1: Pathway-based gene signatures prediction clinical outcome of lung adenocarcinoma. Lung adenocarcinoma is often diagnosed at an advanced stage with poor prognosis. Patients with different clinical outcomes may have similar clinico-pathological characteristics. The results of previous studies for biomarkers for lung adenocarcinoma have generally been inconsistent and limited in clinical application. In this study, we used inverse-variance weighting to combine the hazard ratios for the four datasets and performed pathway analysis to identify prognosis-associated gene signatures. A total of 2,418 genes were found to be significantly associated with overall survival. Of these, a 21-gene signature in the HMGB1/RAGE signalling pathway, a 22-gene signature in the beta-adrenergic receptor regulation of ERK pathway, and a 31-gene signature in the clathrin-coated vesicle cycle pathway were significantly associated with prognosis of lung adenocarcinoma across all four datasets (all p-value< 0.05, log-rank test). We combined the scores for the three pathways to derive a combined pathway-based risk (CPBR) score. Then, three pathway-based signatures and the CPBR score were validated in two independent cohorts. Considering p-values and hazard ratios, three pathway-based signatures and CPBR score had more statistical significant than 2418 genes and showed the consistent results in four datasets. Pathway-based signatures portend the better prediction power for prognosis. Study 2: Apoptosis pathway signature for prediction of treatment response and clinical outcome in childhood high risk B-precursor acute lymphoblastic leukemia The most common cancer in children is acute lymphoblastic leukemia (ALL) and it had high cure rate, especially for B-precursor ALL. However, relapse due to drug resistance and overdose treatment reach the limitations in patient managements. In this study, integration of gene expression microarray data, logistic regression, analysis of microarray (SAM) method, and gene set analysis were performed to discover treatment response associated pathway-based signatures in the original cohort. Results showed that 3,72 probes were significantly associated with treatment response. After pathway analysis, only apoptosis pathway had significant association with treatment response. Apoptosis pathway signature (APS) derived from 15 significantly expressed genes had 88% accuracy for treatment response prediction. The APS was further validated in two independent cohorts. Results also showed that APS was significantly associated with induction failure time (adjusted hazard ratio [HR] =1.60, 95% confidence interval [CI] = [1.13, 2.27]) in the first cohort and significantly associated with event-free survival (adjusted HR=1.56, 95% CI= [1.13, 2.16]) or overall survival in the second cohort (adjusted HR=1.74, 95% CI= [1.24, 2.45]). APS not only can predict clinical outcome, but also provide molecular guidance of patient management. In conclusions, pathway-based analysis could be applied in gene expression profiling measured from high throughput technologies to identified signatures. Pathway-based signatures could not only provide prediction abilities for prognosis, treatment response, and adverse effect, and they may provide potential molecular guidance in clinical practice or targets of drug development after validation in large prospective cohorts. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:05:27Z (GMT). No. of bitstreams: 1 ntu-104-D98548005-1.pdf: 3395582 bytes, checksum: 31a04e68843468ec66242ec7d98c6c63 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 I
中文摘要 II ABSTRACT V LIST OF FIGURES 4 LIST OF TABLES 6 CHAPTER 1 7 INTRODUCTION 7 CHAPTER 2 9 STUDY 1: PATHWAY-BASED GENE SIGNATURES PREDICTION CLINICAL OUTCOME OF LUNG ADENOCARCINOMA 9 2.1 Introduction 9 2.2 Material and Methods 11 2.2.1 Study population and gene expression data 11 2.2.2 Data preprocessing 11 2.2.3 Identification of genes showing statistically significant differential expression using multivariate Cox proportional hazards regression 12 2.2.4 Pathway analysis and risk score calculation 12 2.2.5 Survival analysis 13 2.2.6 CPBR score validated in another independent cohort 13 2.3 Results 14 2.3.1 Identification of genes with a significant hazard ratio (HR) and their associated pathways 14 2.3.2 Pathway-based risk score analysis identifies three pathways that are associated with overall survival in lung adenocarcinoma in all four datasets 14 2.3.3 Pathway-based signatures of the HMGB1 / RAGE signalling pathway, the beta-adrenergic receptor regulation of the ERK pathway and the clathrin-coated vesicle cycle pathway are significantly associated with clinical outcome of lung adenocarcinoma 15 2.3.4 A combined pathway-based risk (CPBR) score based on the combined risk scores for the three individual pathways gives a better prediction of clinical outcome in lung adenocarcinoma 16 2.3.5 Prognostic factors of lung adenocarcinoma 17 2.3.6 Comparisons of the single biomarker and pathway-based signatures 17 2.3.7 Validation of three pathway-based signatures and the CPBR score in two independent cohorts 17 2.4 Discussion 18 CHAPTER 3 44 STUDY 2: APOPTOSIS PATHWAY SIGNATURE FOR PREDICTION OF TREATMENT RESPONSE AND CLINICAL OUTCOME IN CHILDHOOD HIGH RISK B-PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA 44 3.1 Introduction 44 3.2 Materials and Methods 45 3.2.1 Study population and gene expression microarray data 45 3.2.2 Statistical analysis 47 3.3 Results 48 3.3.1 Differentially expressed genes between responder and non-responder 48 3.3.2 Apoptosis-pathway signature (APS) for treatment response and clinical outcome 49 3.3.3 Validation of APS in the two independent cohorts 49 3.4 Discussions 50 CHAPTER 4 61 CONCLUSION AND FUTURE PERSPECTIVE 61 REFERENCES 63 | |
| dc.language.iso | en | |
| dc.subject | 治療反應 | zh_TW |
| dc.subject | 高通量技術 | zh_TW |
| dc.subject | 生物路徑 | zh_TW |
| dc.subject | 基因印記 | zh_TW |
| dc.subject | 預後 | zh_TW |
| dc.subject | gene signature | en |
| dc.subject | high-throughput technology | en |
| dc.subject | treatment response | en |
| dc.subject | prognosis | en |
| dc.subject | pathway-based analysis | en |
| dc.title | 以生物路徑為基礎的方法發掘基因印記及預測臨床表徵 | zh_TW |
| dc.title | Pathway-based Approaches for Gene Signature Identification and Clinical Outcome Prediction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊泮池,陳建仁,沈志陽,李克昭,陳健尉 | |
| dc.subject.keyword | 高通量技術,生物路徑,基因印記,預後,治療反應, | zh_TW |
| dc.subject.keyword | high-throughput technology,prognosis,pathway-based analysis,gene signature,treatment response, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
