Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52048
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建源(Chien-Yuan Pan)
dc.contributor.authorNai-Hsing Yehen
dc.contributor.author葉乃馨zh_TW
dc.date.accessioned2021-06-15T14:05:15Z-
dc.date.available2015-08-21
dc.date.copyright2015-08-21
dc.date.issued2015
dc.date.submitted2015-08-20
dc.identifier.citationAravind, P., Chandra, K., Reddy, P.P., Jeromin, A., Chary, K.V., and Sharma, Y. (2008). Regulatory and structural EF-hand motifs of neuronal calcium sensor-1: Mg2+ modulates Ca2+ binding, Ca2+ -induced conformational changes, and equilibrium unfolding transitions. J Mol Biol 376, 1100-1115.
Benz, J., and Hofmann, A. (1997). Annexins: from structure to function. Biological chemistry 378, 177-183.
Betz, A., Okamoto, M., Benseler, F., and Brose, N. (1997). Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem 272, 2520-2526.
Bonifacino, J.S., and Traub, L.M. (2003). Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72, 395-447.
Braunewell, K.-H., and Gundelfinger, E.D. (1999). Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell and Tissue Research 295, 1-12.
Burgoyne, R.D. (2007). Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8, 182-193.
Burgoyne, R.D., and Weiss, J.L. (2001). The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353, 1-12.
Ceccarelli, B., Hurlbut, W.P., and Mauro, A. (1973). Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. The Journal of Cell Biology 57, 499-524.
Clayton, E.L., Evans, G.J., and Cousin, M.A. (2008). Bulk synaptic vesicle endocytosis is rapidly triggered during strong stimulation. J Neurosci 28, 6627-6632.
Corvera, S., D'Arrigo, A., and Stenmark, H. (1999). Phosphoinositides in membrane traffic. Curr Opin Cell Biol 11, 460-465.
del Castillo, J., and Katz, B. (1954). Quantal components of the end-plate potential. The Journal of Physiology 124, 560-573.
Greene, L.A., and Tischler, A.S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73, 2424-2428.
Greener, T., Zhao, X., Nojima, H., Eisenberg, E., and Greene, L.E. (2000). Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J Biol Chem 275, 1365-1370.
Haffner, C., Di Paolo, G., Rosenthal, J.A., and de Camilli, P. (2000). Direct interaction of the 170 kDa isoform of synaptojanin 1 with clathrin and with the clathrin adaptor AP-2. Curr Biol 10, 471-474.
Harata, N., Pyle, J.L., Aravanis, A.M., Mozhayeva, M., Kavalali, E.T., and Tsien, R.W. (2001). Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci 24, 637-643.
Hata, Y., Slaughter, C.A., and Sudhof, T.C. (1993). Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366, 347-351.
Haucke, V., and De Camilli, P. (1999). AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 285, 1268-1271.
Hayes, M.J., Rescher, U., Gerke, V., and Moss, S.E. (2004). Annexin-actin interactions. Traffic 5, 571-576.
Haynes, L.P., Sherwood, M.W., Dolman, N.J., and Burgoyne, R.D. (2007). Specificity, promiscuity and localization of ARF protein interactions with NCS-1 and phosphatidylinositol-4 kinase-III beta. Traffic 8, 1080-1092.
He, L., Wu, X.S., Mohan, R., and Wu, L.G. (2006). Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444, 102-105.
Hendricks, K.B., Wang, B.Q., Schnieders, E.A., and Thorner, J. (1999). Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1, 234-241.
Heuser, J.E., and Reese, T.S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57, 315-344.
Holtzman, E., Freeman, A.R., and Kashner, L.A. (1971). Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions. Science 173, 733-736.
Lee, A., Scheuer, T., and Catterall, W.A. (2000). Ca2+/Calmodulin-Dependent Facilitation and Inactivation of P/Q-Type Ca2+ Channels. The Journal of Neuroscience 20, 6830-6838.
Lee, A., Wong, S.T., Gallagher, D., Li, B., Storm, D.R., Scheuer, T., and Catterall, W.A. (1999). Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155-159.
Llinas, R.R. (1977). Depolarization-release coupling systems in neurons. Neurosci Res Program Bull 15, 555-687.
Martin, T.F. (2001). PI(4,5)P2 regulation of surface membrane traffic. Curr Opin Cell Biol 13, 493-499.
Miller, S.G., and Moore, H.P. (1991). Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium. J Cell Biol 112, 39-54.
Moncrief, N.D., Kretsinger, R.H., and Goodman, M. (1990). Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol 30, 522-562.
Morgan, J.R., Prasad, K., Jin, S., Augustine, G.J., and Lafer, E.M. (2001). Uncoating of clathrin-coated vesicles in presynaptic terminals: roles for Hsc70 and auxilin. Neuron 32, 289-300.
Moss, S.E., and Morgan, R.O. (2004). The annexins. Genome Biol 5, 219.
Nalefski, E.A., and Falke, J.J. (1996). The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5, 2375-2390.
Pan, C.Y., Jeromin, A., Lundstrom, K., Yoo, S.H., Roder, J., and Fox, A.P. (2002). Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. J Neurosci 22, 2427-2433.
Persechini, A., and Cronk, B. (1999). The relationship between the free concentrations of Ca2+ and Ca2+-calmodulin in intact cells. J Biol Chem 274, 6827-6830.
Persechini, A., Moncrief, N.D., and Kretsinger, R.H. (1989). The EF-hand family of calcium-modulated proteins. Trends Neurosci 12, 462-467.
Peterson, B.Z., DeMaria, C.D., Adelman, J.P., and Yue, D.T. (1999). Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron 22, 549-558.
Pishvaee, B., Costaguta, G., Yeung, B.G., Ryazantsev, S., Greener, T., Greene, L.E., Eisenberg, E., McCaffery, J.M., and Payne, G.S. (2000). A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nat Cell Biol 2, 958-963.
Pongs, O., Lindemeier, J., Zhu, X.R., Theil, T., Engelkamp, D., Krah-Jentgens, I., Lambrecht, H.G., Koch, K.W., Schwemer, J., Rivosecchi, R., et al. (1993). Frequenin--a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11, 15-28.
Praefcke, G.J., and McMahon, H.T. (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5, 133-147.
Rizzoli, S.O., and Jahn, R. (2007). Kiss-and-run, collapse and 'readily retrievable' vesicles. Traffic 8, 1137-1144.
Rousset, M., Cens, T., Gavarini, S., Jeromin, A., and Charnet, P. (2003). Down-regulation of voltage-gated Ca2+ channels by neuronal calcium sensor-1 is beta subunit-specific. J Biol Chem 278, 7019-7026.
Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H., Podtelejnikov, A.V., Witke, W., Huttner, W.B., and Soling, H.D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133-141.
Shimoni, Y., Alnaes, E., and Rahamimoff, R. (1977). Is hyperosmotic neurosecretion from motor nerve endings a calcium-dependent process? Nature 267, 170-172.
Slepnev, V.I., Ochoa, G.C., Butler, M.H., Grabs, D., and De Camilli, P. (1998). Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821-824.
Smith, S.M., Renden, R., and von Gersdorff, H. (2008). Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci 31, 559-568.
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513-525.
Sudhof, T.C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci 27, 509-547.
Sudhof, T.C. (2013). A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med 19, 1227-1231.
Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347-353.
Tsujimoto, T., Jeromin, A., Saitoh, N., Roder, J.C., and Takahashi, T. (2002). Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 295, 2276-2279.
Ungewickell, E., Ungewickell, H., Holstein, S.E.H., Lindner, R., Prasad, K., Barouch, W., Martini, B., Greene, L.E., and Eisenberg, E. (1995). Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632-635.
Ungewickell, E.J., and Hinrichsen, L. (2007). Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19, 417-425.
Voets, T., Neher, E., and Moser, T. (1999). Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron 23, 607-615.
Weiss, J.L., Archer, D.A., and Burgoyne, R.D. (2000). Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem 275, 40082-40087.
Weiss, J.L., and Burgoyne, R.D. (2001). Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J Biol Chem 276, 44804-44811.
Yim, Y.I., Sun, T., Wu, L.G., Raimondi, A., De Camilli, P., Eisenberg, E., and Greene, L.E. (2010). Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proc Natl Acad Sci U S A 107, 4412-4417.
Zhao, X., Greener, T., Al-Hasani, H., Cushman, S.W., Eisenberg, E., and Greene, L.E. (2001). Expression of auxilin or AP180 inhibits endocytosis by mislocalizing clathrin: evidence for formation of nascent pits containing AP1 or AP2 but not clathrin. J Cell Sci 114, 353-365.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52048-
dc.description.abstract鈣離子在神經細胞訊息傳遞中扮演了非常重要的角色,而這些功能多半是由具鈣離子結合功能的蛋白質進行作用。Neuronal calcium sensor-1 (NCS-1)是表現在神經細胞中且具有細胞膜結合能力的鈣離子感應蛋白,有三個能和鈣離子結合的 EF-hand 結構。之前的研究證實 NCS-1在牛腎上腺嗜鉻細胞 (adrenal chromaffin cells) 與大鼠腎上腺嗜鉻瘤细胞株 (PC12)中會影響胞內囊泡的循環再利用機轉。我們實驗室先前由酵母菌雙雜合實驗中發現,NCS-1與協助神經細胞胞吞作用的Auxilin-1 (Aux-1)具有交互作用,因此觀察此交互作用是否為神經細胞調控胞吞與胞吐作用的關鍵。我們以GST標定NCS-1來進行Pulldown Assay,在不同鈣離子濃度中無法觀察到明確的交互作用,我們推測NCS-1與Aux-1之間的作用可能只發生於特定的實驗條件之下。為瞭解 NCS-1與Aux-1分別對神經傳導的影響,我們將蛋白質表現在初級培養的神經胚胎細胞中,測量神經細胞受刺激後,胞内鈣離子的濃度變化。結果顯示過量表現NCS-1會使目標細胞及下游細胞的反應顯著的下降,NCS-1的變異株皆會促進下游細胞的鈣離子反應,對目標細胞的影響各有不同。表現Aux-1的目標細胞反應下降,並不影響下游細胞的反應。我們推測NCS-1可能在神經細胞的囊泡回收機轉扮演抑制性的角色,NCS-1變異株則是與內生性的NCS-1競爭來影響細胞的反應,而Aux-1雖會抑制神經細胞的鈣離子反應,仍能夠協助囊泡回收機轉。zh_TW
dc.description.abstractCalcium influx in neurons is an important event in regulating various signaling pathways like neurotransmitter release and neurite outgrowth. Neuronal calcium sensor-1 (NCS-1) is a member of the EF-hand Ca2+ binding proteins and expressed mainly in nervous system. NCS-1 overexpression affects the vesicle recycling in bovine adrenal chromaffin cells (BC) and has little effect on Ca2+ channels. In our lab, we have also found that NCS-1 and Auxilin-1 (Aux-1), a protein assists endocytosis, have interaction via yeast-two-hybrid. We believe this interaction can be the key to regulate exocytosis and endocytosis. However, our results in protein pulldown assay shows that NCS-1 and Aux-1 have no direct binding activity. We suppose the interaction only exist under specific condition. To observe the effect of NCS-1 and Aux-1 on neurotransmission, we use Ca2+ imaging technique to visualize Ca2+ response after excitation. Our results demonstrate that NCS-1 overexpression inhibits [Ca2+]i elevation in both presynaptic and postsynaptic neurons, but NCS-1 mutants overexpression can enhance Ca2+ response in postsynaptic neurons and have different effect on target neurons. In the Aux-1 expressing neuron, the [Ca2+]i elevation is reduced, while in postsynaptic neurons is unaltered. Therefore, NCS-1 may play an inhibitory role in neurotransmission by regulating synaptic vesicle recycling, and Aux-1 may suppress Ca2+ response and support synaptic vesicle recycling.en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:05:15Z (GMT). No. of bitstreams: 1
ntu-104-R02b21010-1.pdf: 1474102 bytes, checksum: f92a794d2b7e3fa8748778702a01b24d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
1. Introduction 1
1.1. Synaptic vesicle recycling 1
1.2. Exocytosis 2
1.3. Endocytosis 4
1.3.1. Clathrin-mediated endocytosis 4
1.3.2. Kiss-and-run 6
1.3.3. Activity-dependent bulk endocytosis 6
1.4. Regulation of vesicle recycling and neurodegeneration 7
1.5. Neuron Ca2+ sensor 1 (NCS-1) 7
1.6. Auxilin-1 (Aux-1) 11
2. Material and Method 13
2.1. Cell culture and transfections 13
2.1.1. Primary culture of embryonic cortical neurons 13
2.1.2. PC12 cell 14
2.1.3. E coli. Transformation 14
2.1.4. Plasmid extraction 15
2.1.5. Transfection 15
2.2. Protein pull-down assay 15
2.2.1. Protein expression and purification 15
2.2.2. Pull-down assay 17
2.3. Ca2+ imaging of neuronal cells 18
2.4. Fluorescence imaging with synaptopHluorin 20
2.5. Data analysis 20
3. Results 21
3.1. NCS-1-GST does not interact with Aux-1 21
3.2. NCS-1 does not affect ATP evoked exocytosis in PC12 22
3.3. NCS-1 inhibits neurotransmission in primary cultured cortical neurons 23
3.4. NCS-1 does not affect DHPG evoked neurotransmission in primary cultured cortical neurons 24
4. Discussion 26
4.1. NCS-1 and Aux-1 interaction under yeast-two-hybrid and pull-down assay 26
4.2. NCS-1 regulates iGluR but not mGluR 26
5. Reference 28
6. Figure 32
Scheme 1 Synaptic transmission. 32
Scheme 2 Roles of NCS-1 and Aux-1in exocytosis and endocytosis. 33
Fig. 1 NCS-1 does not interact with Aux-1 in GST pulldown assay. 34
Fig. 2 NCS-1 does not affect ATP evoked exocytosis. 35
Fig. 3 Calcium responses evoked by glutamate in primary cortical neurons. 36
Fig. 4 Normalized Ca2+ response of neurons stimulated by laser-uncaged glutamate. 38
Fig. 5 Normalized Ca2+ response of neurons stimulated by DHPG. 40
dc.language.isoen
dc.subjectNCS-1zh_TW
dc.subject胞吞胞吐作用zh_TW
dc.subject初級培養神經細胞zh_TW
dc.subject囊泡回收作用zh_TW
dc.subjectAuxilin-1zh_TW
dc.subjectprimary cultured cortical neuronsen
dc.subjectAuxilin-1en
dc.subjectNCS-1en
dc.subjectsynaptic vesicle recyclingen
dc.subjectexocytosisen
dc.subjectendocytosisen
dc.titleNCS-1與Auxilin-1在神經細胞中對於訊息傳遞的影響zh_TW
dc.titleEffects of NCS-1 and Auxilin-1 on Neurotransmission in Cultured Cortical Neuronsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王致恬,林崇智
dc.subject.keywordAuxilin-1,NCS-1,囊泡回收作用,胞吞胞吐作用,初級培養神經細胞,zh_TW
dc.subject.keywordAuxilin-1,NCS-1,synaptic vesicle recycling,exocytosis,endocytosis,primary cultured cortical neurons,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2015-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved