Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52043
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇
dc.contributor.authorWei-An Wangen
dc.contributor.author王偉安zh_TW
dc.date.accessioned2021-06-15T14:04:56Z-
dc.date.available2017-08-26
dc.date.copyright2015-08-26
dc.date.issued2015
dc.date.submitted2015-08-20
dc.identifier.citation1 Sancar, A., Lindsey-Boltz, L. A., Ünsal-Kaçmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual review of biochemistry 73, 39-85 (2004).
2 Dewey, W. C., Ling, C. C. & Meyn, R. E. Radiation-induced apoptosis: relevance to radiotherapy. International journal of radiation oncology biology physics 33, 781-796 (1995).
3 Dent, P. et al. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiation research 159, 283-300 (2003).
4 Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071-1078 (2009).
5 Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25-35 (1983).
6 Jackson, S. P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23, 687-696 (2002).
7 Uematsu, M. et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. International journal of radiation oncology biology physics 51, 666-670 (2001).
8 Hall, E. J. & Giaccia, A. J. Radiobiology for the radiologist. (Lippincott Williams & Wilkins, 2006).
9 Mattick, J. S. & Makunin, I. V. Non-coding RNA. Human molecular genetics 15, R17-R29 (2006).
10 Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435-1439, doi:10.1126/science.1231776 (2012).
11 Gibb, E. A., Brown, C. J. & Lam, W. L. The functional role of long non-coding RNA in human carcinomas. Molecular cancer 10, 1-17, doi:10.1186/1476-4598-10-38 (2011).
12 Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annual review of biochemistry 81, doi:10.1146/annurev-biochem-051410-092902 (2012).
13 Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature reviews genetics 10, 155-159, doi:10.1038/nrg2521 (2009).
14 Fatica, A. & Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nature reviews genetics 15, 7-21, doi:10.1038/nrg3606 (2014).
15 Wapinski, O. & Chang, H. Y. Long noncoding RNAs and human disease. Trends in cell biology 21, 354-361 (2011).
16 Kabacik, S., Manning, G., Raffy, C., Bouffler, S. & Badie, C. Time, dose and ataxia telangiectasia mutated (ATM) status dependency of coding and noncoding rna expression after ionizing radiation exposure. Radiation research, doi:10.1667/RR13876.1 (2015).
17 Fertil, B. & Malaise, E. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. International journal of radiation oncology biology physics 11, 1699-1707 (1985).
18 Ogawa, K., Murayama, S. & Mori, M. Predicting the tumor response to radiotherapy using microarray analysis (Review). Oncology reports 18, 1243–1248 (2007).
19 Borgmann, K. et al. Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaction after radiotherapy. International journal of radiation oncology biology physics 71, 256-264, doi:10.1016/j.ijrobp.2008.01.007 (2008).
20 Torres-Roca, J. F. et al. Prediction of radiation sensitivity using a gene expression classifier. Cancer research 65, 7169–7176 (2005).
21 Eschrich, S. et al. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. International journal of radiation oncology biology physics 75, 497-505, doi:10.1016/j.ijrobp.2009.05.056 (2009).
22 Eschrich, S. A. et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. International journal of radiation oncology biology physics 75, 489-496, doi:10.1016/j.ijrobp.2009.06.014 (2009).
23 Eschrich, S. A. et al. Validation of a radiosensitivity molecular signature in breast cancer. Clinical cancer research 18, 5134-5143, doi:10.1158/1078-0432.CCR-12-0891 (2012).
24 Kim, H. S. et al. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells. BMC Genomics 13, 348, doi:10.1186/1471-2164-13-348 (2012).
25 Meng, J., Li, P., Zhang, Q., Yang, Z. & Fu, S. A radiosensitivity gene signature in predicting glioma prognostic via EMT pathway. Oncotarget 5, 4683-4693 (2014).
26 Smirnov, D. A. et al. Genetic variation in radiation-induced cell death. Genome Research 22, 332-339, doi:10.1101/gr.122044.111 (2012).
27 Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic acids research 30, 207-210, doi:10.1093/nar/30.1.207 (2002).
28 Paull, K. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. Journal of the National Cancer Institute 81, 1088-1092 (1989).
29 Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 17, 98-110 (2010).
30 Gravendeel, L. A. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer research 69, 9065-9072 (2009).
31 Reinhold, W. C. et al. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer research 72, 3499-3511 (2012).
32 Amundson, S. A. et al. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer research 68, 415–424 (2008).
33 Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307-315 (2004).
34 Bolstad, B. M. preprocessCore: A collection of pre-processing functions. R package version 1 (2013).
35 Du, Z. et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nature Structural & Molecular Biology 20, 908-913, doi:10.1038/nsmb.2591 (2013).
36 Cunningham, F. et al. Ensembl 2015. Nucleic acids research 43, D662-D669 (2015).
37 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559, doi:10.1186/1471-2105-9-559 (2008).
38 Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 8, 22, doi:10.1186/1471-2105-8-22 (2007).
39 Udovičić, M., Baždarić, K., Bilić-Zulle, L. & Petrovečki, M. What we need to know when calculating the coefficient of correlation? Biochemia Medica 17, 10-15 (2007).
40 Meyer, D. & Wien, F. T. Support vector machines. The Interface to libsvm in package e1071 (2014).
41 Zhou, T. et al. Ataxia telangiectasia-mutated–dependent dna damage checkpoint functions regulate gene expression in human fibroblasts. Molecular cancer research 5, 813-822 (2007).
42 Oh, J. H., Wong, H. P., Wang, X. & Deasy, J. O. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS one 7, e38870, doi:10.1371/journal.pone.0038870 (2012).
43 Alsner, J., Andreassen, C. N. & Overgaard, J. Genetic markers for prediction of normal tissue toxicity after radiotherapy. Seminars in radiation oncology 18, 126-135, doi:10.1016/j.semradonc.2007.10.004 (2008).
44 Dressman, H. K. et al. Gene expression signatures that predict radiation exposure in mice and humans. PLoS medicine 4, e106 (2007).
45 Paul, S. et al. Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures. Radiation research 175, 257-265, doi:10.1667/RR2420.1 (2011).
46 Lu, T.-P., Hsu, Y.-Y., Lai, L.-C., Tsai, M.-H. & Chuang, E. Y. Identification of gene expression biomarkers for predicting radiation exposure. Scientific reports 4 (2014).
47 Tsai, M.-H. et al. Transcriptional responses to ionizing radiation reveal that p53R2 protects against radiation-induced mutagenesis in human lymphoblastoid cells. Oncogene 25, 622-632, doi:10.1038/sj.onc.1209082 (2005).
48 Ding, L.-H. et al. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy. BMC genomics 14, 372 (2013).
49 Tsai, M.-H. et al. Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Research 67, 3845–3852 (2007).
50 Watanabe, T. et al. Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by dna microarray analysis of gene expression profiles. Cancer research 66, 3370-3374, doi:10.1158/0008-5472.CAN-05-3834 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52043-
dc.description.abstract放射線治療被廣泛應用在癌症治療上,隨著放射技術與影像定位技術日益精進,各種癌症在適當的治療計畫規劃下,都能夠進行放射線治療。然而,在臨床上,多數的治療計畫主要依照癌症種類不同而非依照病人對於放射線敏感程度進行劑量規劃,使每位病人在治療後的預後結果與治療效果因個體而有所不同。在個人化醫療的時代逐漸到來,評估病人的放射線敏感程度,能夠幫助治療團隊提出更適切每個人的治療計劃,減少病人在治療後的副作用,並且達到治療效果的最大功效。
近年來,許多文獻對於放射線對於基因表現之影響有相當深入的研究,但探討長片段非編碼RNA在輻射線上的影響研究數量並不多。而相較於針對個體輻射線敏感程度,多數研究放射線的主題仍多主要聚焦在預測病人吸收放射線劑量。在本篇研究中,我們整合了長片段非編碼RNA的表現及基因的表現量來建立預測模型以預測接受輻射線治療後的病人之預後。
整體的研究流程可以簡單分為三個階段:
首先,藉由GSE26835中共1086個檢體,我們先定義出了對於照射輻射線後會有表現量差異的基因與長片段非編碼RNA。接著,透過廣泛被應用的標準細胞株:NCI-60做為我們的輸入資料,結合其放射線參數與基因表現量,並利用基因演算法從上一步已挑選出顯著差異的基因與長片段非編碼RNA群中計算出最能用以預測細胞株放射線敏感程度的20個基因與長片段非編碼RNA。最後,利用這20個變數與機器學習演算法(SVM),應用在兩組臨床的腦膜癌(glioblastoma mutliforme)資料上-TCGA與GSE16011,用以評估病人的放射線敏感高低及其個別的預後結果。為證明本研究的結果實為針對放射線治療而非因為其他因子影響成果,我們也將沒有進行放射線治療的病人進行分析,其結果如我們預期的沒有達到統計上的顯著差異。
相較於其他文獻,我們提出了一個較標準的預設模型,即每位病人都可以單獨進行預測,而不需要透過累積一群病人的資料量才能進行分析,此點使本方法在應用層面上更能使用於臨床治療。而我們也是第一個將長片段非編碼RNA做為放射線敏感預測模型的研究。
簡而言之,本研究透過高通量的基因晶片資料,辨別出20個可以用於臨床預測病人放射線治療預後之模型,期望透過未來透過這樣的結果可以提供給醫生與醫學物理師更多病人資訊,用於改善病人的治療計畫並達到個人化醫療之目的。
zh_TW
dc.description.abstractRadiotherapy has been a standard procedure in cancer treatment. With the improvement of medical technology, the conventional radiation therapy is combined with image-guided method (processed by Computed Tomography) and treatment planning, provides high control rate in tumor region. However, most of the radiotherapy planning is based on the cancer type rather than the radiosensitivity of individuals. Thus, to identify the radiosensitivity of each patient to improve the treatment planning and to reduce the side effect becomes an important issue in the era of personal medicine.
Recently, there are more and more studies that focus on the function of long non-coding RNA (LncRNA) which were once regarded as “dark matter”. Although there are several studied that discuss the relationship between gene expression and radiation, LncRNA is relatively new to the field of radiation.
In this study, the process can be described into three parts:
First, we identified radiation responded genes and LncRNAs which has differential expression in GSE26835 with total 1086 samples. Second, we integrate the NCI-60 cell line data, which has been regarded as standard cell lines and its radiation parameter to filter out the radiosensitivity-related pattern in the genes and LncRNAs that identified in the previous step. To select appropriate variables to build up prediction model, we used genetic algorithms to identify 20 probe sets that have the best performance in predicting the radiosensitivity of cell lines. Lastly, we applied two real glioblastoma multiforme (GBM) – TCGA and GSE16011 to validate the 20 probes sets can be used to predict the radiosensitivity of patients or not. We defined patients into radiosensitivity group and radioresistance group, and analyze their survival curve through Log rank test and cox regression test. To prove these 20 probe sets are radiotherapy-specific, we also examined the patients that did not receive radiotherapy. As expected, there is no significant difference in the survival of Non-RT patients.
Compares to other research, our study first integrates the expression profile of genes and LncRNAs. Moreover, we can predict the radiosensitivity once we have the data of patients instead of collecting a series of patients, which makes our method more practically and can be used in clinical situation.
To sum up, our study identifies 20 probe sets that can predict the radiosensitivity of patient with high throughput microarray. We are looking forward to our research can help doctors and medical physicians to improve the prognosis of cancer patients.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:04:56Z (GMT). No. of bitstreams: 1
ntu-104-R02945020-1.pdf: 1532446 bytes, checksum: 533d1d8f1e86b17fbf583c7c0a7bcbb3 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 III
ABSTRACT V
LIST OF FIGURES XI
LIST OF TABLES XII
CHAPTER 1. INTRODUCTION 1
1.1 IONIZING RADIATION 1
1.1.1 Basic concept of Ionizing Radiation 1
1.1.2 The biological effect of radiation 1
1.2 RADIATION THERAPY 2
1.2.1 The Basic Concept of Radiotherapy 2
1.2.2 The Four R in Radiobiology 3
1.3 LONG-NON CODING RNA (LNCRNA) 4
1.4 RADIOSENSITIVITY AND THE SURVIVAL CURVE OF MAMMALIAN CELLS 5
1.4.1 The basic concept 5
1.4.2 The description of survival curve 6
1.5 LITERATURE REVIEW 7
1.6 SPECIFIC AIMS 10
CHAPTER 2. MATERIAL AND METHODS 11
2.1 MATERIALS SUMMARY 14
2.2 DATA PROCESSING 17
2.3 DEFINE LONG-NON CODING RNAS ON AFFYMETRIX ARRAY 17
2.4 DEFINE RADIATION-INDUCED GENE AND LONG NON-CODING RNA 18
2.5 PAIR GENE AND LONG NON-CODING RNA BY NETWORK SIMILARITY 20
2.6 DEFINE RADIOSENSITIVITY GENE AND LONG NON-CODING RNAS 20
2.6.1 The brief description of pipeline 20
2.6.2 Define the Radiosensitivity and Radioresistance group 21
2.6.3 Genetic Algorithm 21
2.6 VALIDATION OF THE RADIOSENSITIVITY MODEL TO PREDICT CLINICAL OUTCOME 25
CHAPTER 3. RESULTS 26
3.1 THE GENES AND LNCRNAS RELATED TO IRRADIATION 26
3.2 THE PAIRED GENES AND LNCRNAS 28
3.3 IDENTIFY THE RADIOSENSITIVITY RELATED GENES AND LNCRNAS 30
3.4 INDEPENDENT VALIDATION IN TWO CLINICAL DATASETS, TCGA AND GSE16011 35
CHAPTER 4. DISCUSSION 40
4.1 SELECTING MICROARRAY PLATFORM TO ANALYZE LNCRNAS 41
4.2 THE RADIATION RESPONDED GENES AND LNCRNA 41
4.3 THE RADIOSENSITIVITY LNCRNAS AND GENE PAIR 43
4.4 THE VARIABLE SELECTING ALGORITHM 44
4.5 COMPARE TO OTHER PUBLISHED RESEARCH 46
4.6 LIMITATIONS 47
CHAPTER 5. CONCLUSION 49
CHAPTER 6. REFERENCES 50
dc.language.isoen
dc.subject輻射線敏感度zh_TW
dc.subject基因晶片zh_TW
dc.subject生物標記zh_TW
dc.subject生物資訊zh_TW
dc.subject長片段非編碼RNAzh_TW
dc.subjectbioinformaticsen
dc.subjectbiomarkersen
dc.subjectmicroarrayen
dc.subjectradiosensitivityen
dc.subjectLong non-coding RNAen
dc.title整合基因與長片段非編碼RNA表現量資料預測病人之輻射線敏感度zh_TW
dc.titleIntegrate Gene and Long non-coding RNA expression profile to predict radiation sensitivityen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭朱杏,蔡孟勳,賴亮全,盧子彬,蕭自宏
dc.subject.keyword長片段非編碼RNA,輻射線敏感度,基因晶片,生物標記,生物資訊,zh_TW
dc.subject.keywordLong non-coding RNA,radiosensitivity,microarray,biomarkers,bioinformatics,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2015-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved