請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5202完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | |
| dc.contributor.author | Ming-Jyun Li | en |
| dc.contributor.author | 李明駿 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:53:28Z | - |
| dc.date.available | 2014-08-08 | |
| dc.date.available | 2021-05-15T17:53:28Z | - |
| dc.date.copyright | 2014-08-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-01 | |
| dc.identifier.citation | [1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[2] D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. C. Fujimoto, Nature Photonics 1, 709 (2007). [3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, Opt. Express 11, 2953 (2003). [4] B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, Opt. Express 12, 2435 (2004). [5] R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 225 (2006). [6] R. Huber, D. C. Adler, and J. G. Fujimoto, Opt. Lett. 31, 2975 (2006). [7] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, Arch. Ophthalmology 113, 326 (1995). [8] J. S. Schuman, P. K. Tamar, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, Ophthalmology 103, 1889 (1996). [9] M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, Ophthalmology 105, 360 (1998). [10] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, Nature Medicine 7, 501 (2001). [11] J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical coherence tomography of ocular diseases, 2nd edition. Thorofare, NJ: Slack Inc.; 2004. [12] B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, J. Biomed. Opt. 6, 474 (2001). [13] S. Jiao, W. Yu, G. Stoica, and L. V. Wang, Appl. Opt. 42, 5191 (2003). [14] S. M. Srinivas, J. F. D. Boer, and H. Park, J. Biomed. Opt. 9, 207 (2004). [15] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, Am J Gastroenterol. 92, 1800 (1997). [16] M. V. Sivak, K. Kobayashi, J. A. Izatt, et al., GastrointestEndosc. 51, 474 (2000). [17] A. R. Tumlinson, B. Povazay, L. P. Hariri, et al., J. Biomed. Opt. 11, 064003 (2006). [18] Y. Yang, S. Whiteman, D. G. Pittius, Y. He, R. K. Wang, and M. A. Spiteri, Phys. Med. Biol. 49, 1247 (2004). [19] N. Hanna, D. Saltzman, D. Mukai, et al., J. ThoracCardiovasc Surg. 129, 615 (2005). [20] M. Tsuboi, A. Hayashi, N. Ikeda, et al., Lung Cancer 56, 387-394 (2005). [21] S. C. Whiteman, Y. Yang, D. G. Pittius, M. Stephens, J. Parmer, and M. A. Spiteri, Clin Cancer Res. 12, 813 (2006). [22] M. E. Brezinski, G. J. Tearney, N. J. Weissman, Heart 77, 397 (1997). [23] J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, Heart 82, 128 (1999). [24] H. Kitabata, T. Kubo, and T. Akasaka, Heart 94, 544 (2008). [25] B. Wong, R. Jackson, S. Guo, J. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M Gu, W. B. Armstrongand, Z. Chen, The Laryngoscope 115, 904 (2005). [26] M. T. Tsai, H. C. Lee, C. W. Lu, Y. M. Wang, C. K. Lee, C. C. Yang, and C. P. Chiang, J. Biomed. Opt. 13, 044012 (2008). [27] M. T. Tsai, H. C. Lee, C. K. Lee, C. H. Yu, H. M. Chen, C. P. Chiang, C. C. Chang, Y. M. Wang, and C. C. Yang, Opt. Express 16, 15847 (2008). [28] X. J. Wang, T. E. Milner, and J. S. Nelson, Opt. Lett. 20, 1337 (1995). [29] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, Opt. Lett. 22, 1119 (1997). [30] J. F. de Boer, T. E. Milner, M. J. Gemert, and J. S. Nelson, Opt. Lett. 22, 934 (1997). [31] G. Yao and L. V. Wang, Opt. Lett. 24, 537 (1999). [32] U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Express 25, 111 (2000) [33] J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Opt. Soc. Am. A. 15, 2288 (1998) [34] A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, Opt. Express 3, 219 (1998). [35] G. Hausler and M. W. Lindner, J. Biomed. Opt. 3, 21 (1998). [36] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995). [37] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, Opt. Lett. 28, 2067 (2003). [38] M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, Opt. Express 11, 2183 (2003). [39] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Opt. Express 11, 889 (2003). [40] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, Opt. Lett. 27, 1415 (2002). [41] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 22, 340 (1997). [42] S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, Opt. Express 12, 2977 (2004). [43] J. Zhang, J. S. Nelson, and Z. Chen, Opt. Lett. 30, 1 (2005). [44] J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, Appl. Phys. Lett. 89, 073901 (2006). [45] Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, Opt. Express 15, 6121 (2007). [46] R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006). [47] X. J. Wang, T. E. Milner, and J. S. Nelson, Opt. Lett. 20, 1337 (1995). [48] J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, Opt. Lett. 22, 1439 (1997). [49] Z. Ding, Y. Zhao, H. Ren, J. Nelson, and Z. Chen, Opt. Express 10, 236 (2002). [50] J. Zhang, J. S. Nelson, and Z. Chen, Opt. Lett. 30, 1 (2005). [51] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, Opt. Lett. 35, 700 (2010). [52] R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, Opt. Express 19, 23831 (2010). [53] D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, Opt. Express 16, 4376 (2008). [54] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, Opt. Lett. 35, 700 (2010). [55] C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, and Y. J. Kwon, J. Biomed. Opt. 14, 034008 (2009). [56] J. H. Baek, T. Krasieva, S. Tang, Y. Ahn, C. S. Kim, D. Vu, Z. Chen, and P. Wilder-Smith, J. Biomed. Opt. 14, 044001 (2009). [57] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, Nano. Lett. 5, 473 (2005). [58] H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, Opt. Lett. 30, 3048 (2005). [59] E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, and M. L. Bugrova, Phys. Med. Biol. 53, 4995 (2008). [60] M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, J. Biomed. Opt. 14, 021017 (2009). [61] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, Nano. Lett. 7, 1929 (2207). [62] A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, Opt. Express 14, 6724 (2006). [63] K. L. Kelly et al., J. Phys. Chem. B. 107, 668 (2003). [64] C. F. Bohren and D. R. Huffman, John Wiley & Sons, Inc., New York, NY, 1st edition (1983). [65] M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004). [66] M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky and M. Motamedi, Nano. Lett. 9, 287 (2009). [67] W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, ACS Nano 5, 1995 (2011). [68] G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Cancer Res. 69, 3892 (2009). [69] A. M. Gobin, J. J. Moon, and J. L. West, Internal. J. Nanomed. 3, 351 (2008). [70] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, Nano. Lett. 7, 1929 (2007). [71] L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, and R. A. Drezek, Breast Cancer Res. Treat. 125, 27 (2011). [72] A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, J. Phys. Chem. B. 110, 19935 (2006). [73] J. Z. Zhang, J. Phys. Chem. Lett. 1, 686 (2010). [74] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, Nano. Lett. 7, 1318 (2007). [75] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, Nano. Lett . 5, 473 (2005). [76] J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, Small 6, 811 (2010). [77] M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, Circulation 93, 1206 (1996). [78] S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang and C. C. Yang, Plasmonics 6, 547 (2011). [79] K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan and R. Richards-Kortum, Cancer Research 63, 1999 (2003). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5202 | - |
| dc.description.abstract | 我們裝設一套頻域光學同調斷層掃描系統其光源頻寬約200奈米,在空氣中之縱向解析度可以達到約2微米,橫向解析度小於4微米。運用此光學同調斷層掃描系統掃描加入金奈米環後的兩種口腔癌細胞 (SCC4和SAS) 。金奈米環的侷域表面電漿子之共振行為,能提高光學同調斷層掃描影像訊號強度,我們將光學同調斷層掃描的光源頻譜均分成長波長和短波長兩部分,二者有不一樣之侷域表面電漿子共振強度。根據光學同調斷層掃描的頻譜分析技術,我們可以使長波長與短波長部分金奈米環分布在細胞樣品裡,產生不一樣的影像強度。光學同調斷層掃描呈現四個階段的細胞狀況,包括未加入金奈米環前、加入金奈米環後、清洗未貼附在細胞表面上或未為細胞吞噬金奈米環、及經過蝕刻貼附在細胞表面金奈米環。從光學同調斷層掃描的影像,尤其,從長波長與短波長的影像差異可以分辨貼附在細胞上之金奈米環和細胞吞噬之金奈米環。也觀察到連接抗體的金奈米環,其貼附細胞和為細胞吞噬效率變得更高。 | zh_TW |
| dc.description.abstract | A spectral-domain optical coherence tomography (OCT) system with a light source of ~200 nm in spectral width to achieve the depth and lateral resolutions of ~2 and <4 microns, respectively, is built. This OCT system is used for scanning two kinds of human oral cancer cells (SCC4 and SAS) with applied Au nanorings (NRIs). The localized surface plasmon (LSP) resonance behavior of the Au NRIs, which results in strong scattering of the Au NRIs for OCT imaging, is well controlled such that the long- and short-wavelength halves of the OCT source spectrum have different LSP resonance strengths. Based on this spectral distribution, the spectroscopic operation of the OCT system can lead to the different imaging intensities of the Au NRI distribution in the cell solution between the long- and short-wavelength images. OCT scans are performed at four stages of cell solution, including those before the application of Au NRIs, after the application of Au NRIs, after the washout of the Au NRIs not adsorbed or internalized by the cells, and after the etching of the Au NRIs not internalized by the cells. From the OCT images, particularly the differences between the long- and short-wavelength images in the spectroscopic operation, one can identify the adsorbed and internalized Au NRIs by the cells. It is found that with antibody linkage to the Au NRIs, the Au NRI adsorption and internalization efficiencies become higher. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:53:28Z (GMT). No. of bitstreams: 1 ntu-103-R01941010-1.pdf: 5541494 bytes, checksum: 798b6dfae3ebfcf8a7ad5a556afd8036 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 III
Abstract IV Contents V Chapter 1 Introduction 1 1.1 Optical Coherence Tomography 1 1.2 Theory of Optical Coherence Tomography 2 1.3 Fourier-domain Optical Coherence Tomography 7 1.3.1 Spectral-domain Optical Coherence Tomography 9 1.3.2 Swept-source Optical Coherence Tomography 10 1.4 Functional Imaging of OCT 12 1.4.1 Optical Doppler Tomography 12 1.4.2 Polarization-sensitive OCT (PSOCT) 13 1.4.3 Photothermal OCT 15 1.4.4 Spectroscopic OCT 16 1.5 Using Metal Nanoparticles as Contrast Agent in OCT 17 1.6 Research Motivations 20 Chapter 2 On-substrate Fabrication of Bio-conjugated Au Nanoring Solution 25 2.1 Localized Surface Plasmon 25 2.2 Surface Plasmon Resonance Characteristics of Au Nanorings 27 2.3 Fabrication of Bio-conjugated Au Nanoring 29 Chapter 3 Optical Coherence Tomography Scanning Results and Discussions 45 3.1 Experimental Setup and Sample Preparation 45 3.2 OCT Scanning Results of SCC4 Cancer Cells 48 3.3 OCT Scanning Results of SAS Cancer Cells 53 3.4 Discussions 56 Chapter 4 Conclusions 82 References 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光學同調斷層掃描 | zh_TW |
| dc.subject | optical coherence tomography | en |
| dc.title | 利用頻譜分析光學同調斷層掃瞄技術觀察癌細胞攝取過程中金奈米環之分佈 | zh_TW |
| dc.title | Observation of Au Nanoring Distribution during Cancer Cell Uptake with Spectroscopic Optical Coherence Tomography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳顯禎,孫家偉,江衍偉 | |
| dc.subject.keyword | 光學同調斷層掃描, | zh_TW |
| dc.subject.keyword | optical coherence tomography, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 5.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
