請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52025完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉(Hsin-Chia Lu) | |
| dc.contributor.author | Jyun-Miao Hong | en |
| dc.contributor.author | 洪俊淼 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:03:47Z | - |
| dc.date.available | 2015-08-21 | |
| dc.date.copyright | 2015-08-21 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | [1] I.-H. Kim, G.-M. Kim, E.-C. Park and K.-D. Chung, “A WPAN platform design in mobile phone considering application development and usability,” International Journal of Computers, Communications & Control, vol. 7, no. 1 , pp. 73-89, March 2012.
[2] Wireless LAN at 60 GHz - IEEE 802.11ad Explained. Available: http://cp.literature.agilent.com/litweb/pdf/5990-9697EN.pdf [3] David M. Pozar, Microwave engineering, 4th edition, Jhon Wiley & Sons, 2011. [4] O. Vermesan, P. Friess, “Internet of Things – From Research and Innovation to Market Deployment,” River Publishers, Aalborg, 2014. [5] R. Kulke, M. Rittweger, P. Uhlig, C. Günner, “LTCC – Multilayer ceramic for sensor and wireless applications,” IMST GmbH, December 2001. [6] J.D.Kraus and R. J. Marhefka,'Antennas For All Applications,' edition, McGraw-Hill, 2002. [7] Natalia K. Nikolova, “Lecture 5: Polarization and Related Antenna Parameters,” current lectures, 2014. Available: http://www.ece.mcmaster.ca/faculty/nikolova/antenna_dload/current_lectures/L05_Polar.pdf [8] Indrasen Singh, and V.S. Tripathi, “Microstrip patch antenna and its applications: a survey,” Int. J. Comp. Tech. Appl., vol. 2,no.5, Sept.-Oct. 2011, pp. 1595-1599. [9] Hemant Kumar Varshney, Mukesh Kumar, A.K.Jaiswal, Rohini Saxena and Komal Jaiswal, “A survey on different feeding techniques of rectangular microstrip patch antenna,” International Journal of Current Engineering and Technology, vol. 4, no.3, June 2014, pp 1418- 1423. [10] Gurdeep Singh and Jaget Singh, ”Comparative analysis of microstrip patch antenna with different feeding techniques,” International Conference on Recent Advances and Future Trends in Information Technology, 2012. [11] Pozar, D. M., “Review of Aperture Coupled Microstrip Antenna: History, Operation, Development, and Application,” Microwave Online System Company world wide web site, July, 1996. [12] J. S. Roy and M. Thomas, 'Investigations on a new proximity coupled dual-frequency microstrip antenna for wireless communication,' Microwave Review, vol. 13, no. 1, June 2007, pp. 12-15. [13] Mehdi Ali, Abdennacer Kachouri and Mounir Samet, “New methodology of conceiving stacked proximity feed antenna,” Mediterranean Microwave Symposium (MMS), Sept, 2011. [14] C.A. Balanis, “Antenna theory,” 3rd edition, Addison-Wiley Publishing Company, 1997. [15] Ahmed Khidre, Kai-Fong Lee, Fan Yang and Atef Z. Elsherbeni, “Circular polarization reconfigurable wideband E-shaped patch antenna for wireless applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no.2, 2013, pp. 960-964. [16] 蕭翔宇, ”於 LTCC 基板實現 60GHz 可切換極化微帶線平板天線,”臺灣大學電信工程研究所碩士論文,” 台灣大學, July 2013. [17] Yongxi Qian and Tatsuo Itoh, “A broadband uniplanar microstrip-to-CPS transition,” in 1997 Asia-Pacific Microwave Conference, 2-5 Dec. 1997. [18] Tomasz Maleszka and Grzegorz Jaworski, “Broadband stripline to microstrip transition with constant impedance field matching section for applications in multilayer planar technologies,” Microwave Radar and Wireless Communications (MIKON), 2010 18th International Conference, 14-16 June 2010. [19] Ruzhdi Sefa and Arianit Maraj, “Analysis and design of microstrip to balanced stripline transitions,” World Scientific and Engineering Academy and Society (WSEAS),2011, pp 137-142. [20] Rony E. Amaya, Ming Li, Khelifa Hettak, and Cornelius J. Verver, 'A broadband 3D vertical microstrip to stripline transition in LTCC using a quasi-coaxial structure for millimetre-wave SOP applications,' in 2010 European Microwave Conference (EuMC), Sep 2010, pp. 109-112. [21] Fangzhou Guo, Lei Xia and Ruimin Xu, “Modeling of LTCC microstrip to stripline vertical via transition exploiting space mapping technique,” Communication Problem-Solving (ICCP), 5-7 Dec. 2014. [22] Hiroshi Uchimura, Takeshi Takenoshita and Mikio Fujii, “development of a “laminated waveguide”,” IEEE transactions on microwave theory and techniques, vol. 46, no.12, December 1998, pp.2438-2443. [23] Jiming Song, Feng Ling, Greg Flynn, William Blood, and Ertugrul Demircan, “A de-embedding technique for interconnects,” Electrical Performance of Electronic Packaging, 2011, pp. 129 – 132. [24] Seitaro Kawai, Korkut Kaan Tokgoz, Kenichi Okada, and Akira Matsuzawa, “L-2L de-embedding method with double-T-type PAD model for millimeter-wave amplifier design,” Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 26-28 Jan. 2015, pp. 43 - 45 [25] Hsiao-Tsung Yen, Tzu-Jin Yeh, and Sally Liu, “A physical de-embedding method for silicon-based device applications,” PIERS, vol. 5, no.4, 2009, pp. 301-305. [26] Hsin-Chia Lu and Tah-Hsiung Chu, “On transition characterization using TRL calibration method” 2002 APMC (Asia-Pacific Microwave Conference), Dec. 2002, pp.911~913. [27] Christophe Seguinot, Patrick Kennis, Jean-Franic¸osLegier, Fabrice Huret, Erick Paleczny and Leonard Hayden, “Multimode TRL—a new concept in microwave measurements: theory and experimental verification,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no.5, 1998, pp. 110-116. [28] Hermann-Josef Eul and Burkhard Schiek, “A generalized theory and new calibration procedures for network analyzer self-calibration,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no.4, April 1991, pp. 110-116. [29] Amendra Koul, Praveen K. R. Anmula, Marina Y. Koledintseva, James L. Drewniak and Scott Hinaga, “Improved technique for extracting parameters of low-loss dielectrics on printed circuit boards,” IEEE International Symposium on Electromagnetic Compatibility, 17-21 Aug. 2009, pp. 191 – 196. [30] Amendra Koul, Marina Y. Koledintseva, Scott Hinaga and James L. Drewniak, “ Differential extrapolation method for separating dielectric and rough conductor losses in printed circuit boards,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no.2, 2012, pp. 421-433. [31] Tooraj Esmailian, Frank R. Kschischang and P. Glenn Gulak, “In-building power lines as high-speed communication channels: channel characterization and a test channel ensemble,” International Journal of Communication Systems, May 2003, pp. 381-400. [32] Chanchal Yadav, “A comparative study of resonator based method to estimate permittivity,” International Journal of Engineering Research & Technology (IJERT), vol. 3, no.6, June 2014, pp. 409-417. [33] Gang Zou, Hans Grönqvist, J. Piotr Starski and Johan Liu, “Characterization of liquid crystal polymer for high frequency system-in-a-package applications,” IEEE Transactions on advanced packaging, vol. 25, no.4, Nov. 2002, pp. 503-508 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52025 | - |
| dc.description.abstract | 本論文第一部份,研究在 60GHz頻段下可切換極化的平板天線,在平板天線下方設置90度耦合器,分別對90度耦合器饋入相位差0度、180度、正負90度進而產生4種極化,分別為水平極化、垂直極化的兩種線性極化天線以及左旋極化、右旋極化的兩種圓型極化天線,達到改善天線在不同方位有效收發功能,更而希望能利用此結構縮小現今切換極化天線在平面設計上的面積。
此天線實現在低溫共燒陶瓷(low temperature co-fired ceramic, LTCC)的封裝製程中,利用此封裝的堆疊技術,使得天線以及被動元件的設計在垂直結構中能有較大的自由度。為了下針量測方便,減少饋入端口,還有因製程的線寬、線距的限制,也設計了使用正負90度以及180度功率分配器以及表層到內層的垂直轉接設計。 第二部分為量測不同基板的介電係數及正切損耗等參數,在設計上傳輸線因 需求而有不同的形態產生,例如微帶線(microstrip)、帶線(stripline)、共平面波導(CPW,coplanar waveguide)……等等,在參數萃取部份利用較簡易實現的微帶線,在做TRL(thru、reflect、line)校準方法解出介電係數及正切損耗。另一種方法為使用環諧振器(ring resonator)也可以萃取介電係數及正切損失。 | zh_TW |
| dc.description.abstract | The first part of the thesis is the design of polarization switchable antenna at 60 GHz.The structure is formed by a patch and a coupler. When the two of coupler input ports are fed with phase difference of 90º, -90º and 180º, patch will be radiate at four different polarizations at X-direction, Y-direction linear polarizations and right-hand, left-hand circular polarizations. It will be used as a building block for polarization switchable array for better signal quality.
The antenna is implement in low temperature co-fired ceramic(LTCC).We use stacking of LTCC process to design antenna and passive component in vertical architecture. The second part of the thesis shows the dielectric constants and loss tangent measurement of different types of substrates. Both TRL calibration method and ring resonator are used. Microstrip line is used as the transmission line in the measurement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:03:47Z (GMT). No. of bitstreams: 1 ntu-104-R02942080-1.pdf: 8845501 bytes, checksum: 10d06e726e373aec125e4470674a31e4 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 簡介 1 1.1 研究動機 1 1.2 V頻帶背景介紹 2 1.3 低溫共燒陶瓷(LTCC) 4 1.4 極化切換 6 1.5 各章節簡介 7 Chapter 2 相關理論與設計 8 2.1 天線公式與參數定義 8 2.1.1 方向性與增益 8 2.1.2 輻射阻抗與頻寬 9 2.1.3 極化定義 10 2.1.4 極化損失因子(PLF) 12 2.2 微帶天線(microstrip antenna) 13 2.2.1 饋入方法與饋入種類 15 2.2.2 文獻回顧 17 2.2.3 微帶線與平板 20 Chapter 3 寄生輻射平板天線 25 3.1 寄生輻射平板天線 25 3.1.1 耦合器與平板 25 3.2 為下針量測之佈局設計 33 3.2.1 / 和 功率分配器[17] 34 3.2.2 帶線(stripline)轉微帶線(microstrip line) 38 3.2.3 垂直(vertical)轉接 43 3.2.4 下針平台(probe station)方式模擬 45 3.3 包含下針結構之天線模擬 48 3.3.1 線性極化 48 3.3.2 圓極化 52 Chapter 4 天線量測 58 4.1 低頻天線模擬 58 4.2 低頻天線量測 64 Chapter 5 基板特性模擬與量測 72 5.1 誤差矩陣萃取與模型化 72 5.1.1 TRL校準原理 73 5.1.2 利用矩陣特徵值解誤差矩陣 77 5.1.3 誤差矩陣的等效模型電路 80 5.2 基板參數萃取 81 5.2.1 利用傳輸線長度差萃取 82 5.2.2 利用傳輸線ABCD矩陣萃取 85 5.2.3 利用還諧振器(ring resonator)萃取 88 5.3 量測萃取 90 5.3.1 基板板材1 90 5.3.2 基板板材2 94 Chapter 6 結論 98 參考文獻 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 環諧振器 | zh_TW |
| dc.subject | 極化切換 | zh_TW |
| dc.subject | 平板天線 | zh_TW |
| dc.subject | 微帶線 | zh_TW |
| dc.subject | 低溫共燒陶瓷 | zh_TW |
| dc.subject | 轉接設計 | zh_TW |
| dc.subject | V頻段 | zh_TW |
| dc.subject | 校正 | zh_TW |
| dc.subject | 參數萃取 | zh_TW |
| dc.subject | 誤差矩陣 | zh_TW |
| dc.subject | extraction | en |
| dc.subject | patch antenna | en |
| dc.subject | microstrip line | en |
| dc.subject | LTCC | en |
| dc.subject | transition | en |
| dc.subject | v-band | en |
| dc.subject | calibration | en |
| dc.subject | error box | en |
| dc.subject | ring resonator | en |
| dc.subject | polarization switchable | en |
| dc.title | 60GHz切換極化之寄生輻射平板天線與基板高頻特性研究 | zh_TW |
| dc.title | Polarization Switchable Parasitic Patch Antenna at 60GHz And Characterization of Planar Substrate at Millimeter Wave Band | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳士元(Shih-Yuan Chen),林怡成(Yi-Cheng Lin),陳晏笙(Yen-Sheng Chen) | |
| dc.subject.keyword | 極化切換,平板天線,微帶線,低溫共燒陶瓷,轉接設計,V頻段,校正,參數萃取,誤差矩陣,環諧振器, | zh_TW |
| dc.subject.keyword | polarization switchable,patch antenna,microstrip line,LTCC,transition,v-band,calibration,extraction,error box,ring resonator, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 8.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
