請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52007完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉秉慧(Biing-Hui Liu) | |
| dc.contributor.author | Miao-Ju Chien | en |
| dc.contributor.author | 簡妙如 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:02:41Z | - |
| dc.date.available | 2018-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | Bamias, G., and Boletis, J. (2008). Balkan nephropathy: evolution of our knowledge. American journal of kidney diseases : the official journal of the National Kidney Foundation 52, 606-616.
Black, P.C., and Dinney, C.P. (2007). Bladder cancer angiogenesis and metastasis--translation from murine model to clinical trial. Cancer metastasis reviews 26, 623-634. Chatterjee, S., Heukamp, L.C., Siobal, M., Schottle, J., Wieczorek, C., Peifer, M., Frasca, D., Koker, M., Konig, K., Meder, L., et al. (2013). Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. The Journal of clinical investigation 123, 1732-1740. Chen, C.H., Dickman, K.G., Moriya, M., Zavadil, J., Sidorenko, V.S., Edwards, K.L., Gnatenko, D.V., Wu, L., Turesky, R.J., Wu, X.R., et al. (2012). Aristolochic acid-associated urothelial cancer in Taiwan. Proceedings of the National Academy of Sciences of the United States of America 109, 8241-8246. Clutterbuck, D.R., Leroy, A., O'Connell, M.A., and Semple, C.A. (2005). A bioinformatic screen for novel A-I RNA editing sites reveals recoding editing in BC10. Bioinformatics (Oxford, England) 21, 2590-2595. Cosyns, J.P. (2003). Aristolochic acid and 'Chinese herbs nephropathy': a review of the evidence to date. Drug safety 26, 33-48. Cui, M., Liu, Z.H., Qiu, Q., Li, H., and Li, L.S. (2005). Tumour induction in rats following exposure to short-term high dose aristolochic acid I. Mutagenesis 20, 45-49. Debelle, F.D., Nortier, J.L., De Prez, E.G., Garbar, C.H., Vienne, A.R., Salmon, I.J., Deschodt-Lanckman, M.M., and Vanherweghem, J.L. (2002). Aristolochic acids induce chronic renal failure with interstitial fibrosis in salt-depleted rats. Journal of the American Society of Nephrology : JASN 13, 431-436. Debelle, F.D., Vanherweghem, J.L., and Nortier, J.L. (2008). Aristolochic acid nephropathy: a worldwide problem. Kidney international 74, 158-169. Escarpe, P., Zayek, N., Chin, P., Borellini, F., Zufferey, R., Veres, G., and Kiermer, V. (2003). Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Molecular therapy : the journal of the American Society of Gene Therapy 8, 332-341. Evans, H.K., Wylie, A.A., Murphy, S.K., and Jirtle, R.L. (2001). The neuronatin gene resides in a 'micro-imprinted' domain on human chromosome 20q11.2. Genomics 77, 99-104. Fan, D.G., Zhao, F., Ding, Y., Wu, M.M., Fan, Q.Y., Shimizu, K., Dohjima, T., Nozawa, S., Wakahara, K., Ohno, T., et al. (2011). BLCAP induces apoptosis in human Ewing's sarcoma cells. Experimental biology and medicine (Maywood, NJ) 236, 1030-1035. Galeano, F., Leroy, A., Rossetti, C., Gromova, I., Gautier, P., Keegan, L.P., Massimi, L., Di Rocco, C., O'Connell, M.A., and Gallo, A. (2010). Human BLCAP transcript: new editing events in normal and cancerous tissues. International journal of cancer Journal international du cancer 127, 127-137. Gromova, I., Gromov, P., and Celis, J.E. (1999). Identification of true differentially expressed mRNAs in a pair of human bladder transitional cell carcinomas using an improved differential display procedure. Electrophoresis 20, 241-248. Gromova, I., Gromov, P., and Celis, J.E. (2002). bc10: A novel human bladder cancer-associated protein with a conserved genomic structure downregulated in invasive cancer. International journal of cancer Journal international du cancer 98, 539-546. Gromova, I., Gromov, P., Kroman, N., Wielenga, V.T., Simon, R., Sauter, G., and Moreira, J.M. (2012). Immunoexpression analysis and prognostic value of BLCAP in breast cancer. PloS one 7, e45967. He, H.C., Chen, J.H., Chen, X.B., Qin, G.Q., Cai, C., Liang, Y.X., Han, Z.D., Dai, Q.S., Chen, Y.R., Zeng, G.H., et al. (2012). Expression of hedgehog pathway components is associated with bladder cancer progression and clinical outcome. Pathology oncology research : POR 18, 349-355. Hu, X., Wan, S., Ou, Y., Zhou, B., Zhu, J., Yi, X., Guan, Y., Jia, W., Liu, X., Wang, Q., et al. (2015). RNA over-editing of BLCAP contributes to hepatocarcinogenesis identified by whole-genome and transcriptome sequencing. Cancer letters 357, 510-519. Huang, H., Huang, H., Li, Y., Liu, M., Shi, Y., Chi, Y., and Zhang, T. (2013). Gremlin induces cell proliferation and extra cellular matrix accumulation in mouse mesangial cells exposed to high glucose via the ERK1/2 pathway. BMC nephrology 14, 33. Hubertus, J., Zitzmann, F., Trippel, F., Muller-Hocker, J., Stehr, M., von Schweinitz, D., and Kappler, R. (2013). Selective methylation of CpGs at regulatory binding sites controls NNAT expression in Wilms tumors. PloS one 8, e67605. Karagiannis, G.S., Musrap, N., Saraon, P., Treacy, A., Schaeffer, D.F., Kirsch, R., Riddell, R.H., and Diamandis, E.P. (2015). Bone morphogenetic protein antagonist gremlin-1 regulates colon cancer progression. Biological chemistry 396, 163-183. Kim, M., Yoon, S., Lee, S., Ha, S.A., Kim, H.K., Kim, J.W., and Chung, J. (2012). Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion. PloS one 7, e35100. Koketsu, K., Yoshida, D., Kim, K., Ishii, Y., Tahara, S., Teramoto, A., and Morita, A. (2015). Gremlin, a bone morphogenetic protein antagonist, is a crucial angiogenic factor in pituitary adenoma. International journal of endocrinology 2015, 834137. Lee, E.J., Park, S.S., Kim, W.J., and Moon, S.K. (2012). IL-5-induced migration via ERK1/2-mediated MMP-9 expression by inducing activation of NF-kappaB in HT1376 cells. Oncology reports 28, 1084-1090. Lee, H., O'Meara, S.J., O'Brien, C., and Kane, R. (2007). The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Investigative ophthalmology & visual science 48, 4291-4299. Letasiova, S., Medve'ova, A., Sovcikova, A., Dusinska, M., Volkovova, K., Mosoiu, C., and Bartonova, A. (2012). Bladder cancer, a review of the environmental risk factors. Environmental health : a global access science source 11 Suppl 1, S11. Li, Y., Tan, X., Dai, C., Stolz, D.B., Wang, D., and Liu, Y. (2009). Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. Journal of the American Society of Nephrology : JASN 20, 1907-1918. Li, Y., Wang, Z., Wang, S., Zhao, J., Zhang, J., and Huang, Y. (2012). Gremlin-mediated decrease in bone morphogenetic protein signaling promotes aristolochic acid-induced epithelial-to-mesenchymal transition (EMT) in HK-2 cells. Toxicology 297, 68-75. Lian, C.G., Xu, S., Guo, W., Yan, J., Frank, M.Y., Liu, R., Liu, C., Chen, Y., Murphy, G.F., and Chen, T. (2014). Decrease of 5-hydroxymethylcytosine in rat liver with subchronic exposure to genotoxic carcinogens riddelliine and aristolochic acid. Molecular carcinogenesis. Liu, A., and Niswander, L.A. (2005). Bone morphogenetic protein signalling and vertebrate nervous system development. Nature reviews Neuroscience 6, 945-954. Lyons, K., and Ezaki, M. (2009). Molecular regulation of limb growth. The Journal of bone and joint surgery American volume 91 Suppl 4, 47-52. Maas, S., Rich, A., and Nishikura, K. (2003). A-to-I RNA editing: recent news and residual mysteries. The Journal of biological chemistry 278, 1391-1394. Mengs, U. (1987). Acute toxicity of aristolochic acid in rodents. Archives of toxicology 59, 328-331. Mengs, U. (1988). Tumour induction in mice following exposure to aristolochic acid. Archives of toxicology 61, 504-505. Merino, R., Rodriguez-Leon, J., Macias, D., Ganan, Y., Economides, A.N., and Hurle, J.M. (1999). The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development (Cambridge, England) 126, 5515-5522. Michos, O., Panman, L., Vintersten, K., Beier, K., Zeller, R., and Zuniga, A. (2004). Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development (Cambridge, England) 131, 3401-3410. Misquitta, C.M., Iyer, V.R., Werstiuk, E.S., and Grover, A.K. (2001). The role of 3'-untranslated region (3'-UTR) mediated mRNA stability in cardiovascular pathophysiology. Molecular and cellular biochemistry 224, 53-67. Mitola, S., Ravelli, C., Moroni, E., Salvi, V., Leali, D., Ballmer-Hofer, K., Zammataro, L., and Presta, M. (2010). Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116, 3677-3680. Moreira, J.M., Ohlsson, G., Gromov, P., Simon, R., Sauter, G., Celis, J.E., and Gromova, I. (2010). Bladder cancer-associated protein, a potential prognostic biomarker in human bladder cancer. Molecular & cellular proteomics : MCP 9, 161-177. Namkoong, H., Shin, S.M., Kim, H.K., Ha, S.A., Cho, G.W., Hur, S.Y., Kim, T.E., and Kim, J.W. (2006). The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein. BMC cancer 6, 74. Nishimoto, Y., Yamashita, T., Hideyama, T., Tsuji, S., Suzuki, N., and Kwak, S. (2008). Determination of editors at the novel A-to-I editing positions. Neuroscience research 61, 201-206. Nortier, J.L., Martinez, M.C., Schmeiser, H.H., Arlt, V.M., Bieler, C.A., Petein, M., Depierreux, M.F., De Pauw, L., Abramowicz, D., Vereerstraeten, P., et al. (2000). Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). The New England journal of medicine 342, 1686-1692. Paska, A.V., and Hudler, P. (2015). Aberrant methylation patterns in cancer: a clinical view. Biochemia medica 25, 161-176. Peng, M., Xie, T., Yu, J., Xu, B., Song, Q., and Wu, X. (2012). Bladder cancer-associated protein is suppressed in human cervical tumors. Experimental and therapeutic medicine 3, 336-340. Philibert, R.A., Plume, J.M., Gibbons, F.X., Brody, G.H., and Beach, S.R. (2012). The impact of recent alcohol use on genome wide DNA methylation signatures. Frontiers in genetics 3, 54. Pillai, R.S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? RNA (New York, NY) 11, 1753-1761. Pozdzik, A.A., Salmon, I.J., Debelle, F.D., Decaestecker, C., Van den Branden, C., Verbeelen, D., Deschodt-Lanckman, M.M., Vanherweghem, J.L., and Nortier, J.L. (2008). Aristolochic acid induces proximal tubule apoptosis and epithelial to mesenchymal transformation. Kidney international 73, 595-607. Rae, F.K., Stephenson, S.A., Nicol, D.L., and Clements, J.A. (2000). Novel association of a diverse range of genes with renal cell carcinoma as identified by differential display. International journal of cancer Journal international du cancer 88, 726-732. Sato, N., Takahashi, D., Chen, S.M., Tsuchiya, R., Mukoyama, T., Yamagata, S., Ogawa, M., Yoshida, M., Kondo, S., Satoh, N., et al. (2004). Acute nephrotoxicity of aristolochic acids in mice. The Journal of pharmacy and pharmacology 56, 221-229. Selman, M., Pardo, A., and Kaminski, N. (2008). Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS medicine 5, e62. Shibutani, S., Dong, H., Suzuki, N., Ueda, S., Miller, F., and Grollman, A.P. (2007). Selective toxicity of aristolochic acids I and II. Drug metabolism and disposition: the biological fate of chemicals 35, 1217-1222. Stachurska, A., Kozakowska, M., Jozkowicz, A., Dulak, J., and Loboda, A. (2011). Aristolochic acid I and ochratoxin A differentially regulate VEGF expression in porcine kidney epithelial cells--the involvement of SP-1 and HIFs transcription factors. Toxicology letters 204, 118-126. Stiborova, M., Frei, E., Arlt, V.M., and Schmeiser, H.H. (2008). Metabolic activation of carcinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy. Mutation research 658, 55-67. Tampe, D., and Zeisberg, M. (2014). Potential approaches to reverse or repair renal fibrosis. Nature reviews Nephrology 10, 226-237. Topol, L.Z., Bardot, B., Zhang, Q., Resau, J., Huillard, E., Marx, M., Calothy, G., and Blair, D.G. (2000a). Biosynthesis, post-translation modification, and functional characterization of Drm/Gremlin. The Journal of biological chemistry 275, 8785-8793. Topol, L.Z., Modi, W.S., Koochekpour, S., and Blair, D.G. (2000b). DRM/GREMLIN (CKTSF1B1) maps to human chromosome 15 and is highly expressed in adult and fetal brain. Cytogenetics and cell genetics 89, 79-84. van Vlodrop, I.J., Baldewijns, M.M., Smits, K.M., Schouten, L.J., van Neste, L., van Criekinge, W., van Poppel, H., Lerut, E., Schuebel, K.E., Ahuja, N., et al. (2010). Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. The American journal of pathology 176, 575-584. Vanherweghem, J.L., Depierreux, M., Tielemans, C., Abramowicz, D., Dratwa, M., Jadoul, M., Richard, C., Vandervelde, D., Verbeelen, D., Vanhaelen-Fastre, R., et al. (1993). Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet (London, England) 341, 387-391. Walsh, D.W., Roxburgh, S.A., McGettigan, P., Berthier, C.C., Higgins, D.G., Kretzler, M., Cohen, C.D., Mezzano, S., Brazil, D.P., and Martin, F. (2008). Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. Biochimica et biophysica acta 1782, 10-21. Wang, D.J., Zhi, X.Y., Zhang, S.C., Jiang, M., Liu, P., Han, X.P., Li, J., Chen, Z., and Wang, C.L. (2012). The bone morphogenetic protein antagonist Gremlin is overexpressed in human malignant mesothelioma. Oncology reports 27, 58-64. Wang, W., and Zhang, J. (2008). Protective effect of erythropoietin against aristolochic acid-induced apoptosis in renal tubular epithelial cells. European journal of pharmacology 588, 135-140. Wordinger, R.J., Zode, G., and Clark, A.F. (2008). Focus on molecules: gremlin. Experimental eye research 87, 78-79. Xiao, Y.T., Xiang, L.X., and Shao, J.Z. (2007). Bone morphogenetic protein. Biochemical and biophysical research communications 362, 550-553. Yao, J., Duan, L., Fan, M., Yuan, J., and Wu, X. (2007). Overexpression of BLCAP induces S phase arrest and apoptosis independent of p53 and NF-kappaB in human tongue carcinoma : BLCAP overexpression induces S phase arrest and apoptosis. Molecular and cellular biochemistry 297, 81-92. Zeng, Y., Yang, X., Wang, J., Fan, J., Kong, Q., and Yu, X. (2012). Aristolochic acid I induced autophagy extenuates cell apoptosis via ERK 1/2 pathway in renal tubular epithelial cells. PloS one 7, e30312. Zhu, S., Wang, Y., Jin, J., Guan, C., Li, M., Xi, C., Ouyang, Z., Chen, M., Qiu, Y., Huang, M., et al. (2012). Endoplasmic reticulum stress mediates aristolochic acid I-induced apoptosis in human renal proximal tubular epithelial cells. Toxicology in vitro : an international journal published in association with BIBRA 26, 663-671. Zoli, W., Ricotti, L., Tesei, A., Ulivi, P., Gasperi Campani, A., Fabbri, F., Gunelli, R., Frassineti, G.L., and Amadori, D. (2004). Schedule-dependent cytotoxic interaction between epidoxorubicin and gemcitabine in human bladder cancer cells in vitro. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 1500-1507. Zuo, Z., Zhao, M., Liu, J., Gao, G., and Wu, X. (2006). Functional analysis of bladder cancer-related protein gene: a putative cervical cancer tumor suppressor gene in cervical carcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 27, 221-226. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52007 | - |
| dc.description.abstract | 馬兜鈴酸 (Aristolochic acid, AA) 是馬兜鈴科植物的天然成份,主要由馬兜鈴酸 I 和馬兜鈴酸 II 所組成,目前已知馬兜鈴酸 I 為主要腎毒性及致癌性的來源,研究指出服用馬兜鈴酸可能導致包括膀胱癌在內的泌尿道腫瘤形成,國際癌症研究中心 (IARC) 也將其分類為人類致癌物 (Group1)。許多臨床調查研究發現 Bladder cancer-associated protein (BLCAP) 與膀胱及其他腫瘤的進程相關,推測其 blcap 基因可能扮演著抑癌基因的角色,但是目前對其相關機轉仍不清楚。Gremlin 是骨形成蛋白 (bone morphogenetic protein, BMPs) 家族的拮抗蛋白,在細胞生長和分化佔有一席之地,近期研究也認為 Gremlin 和許多癌症的調控有關。
本研究的主要目的在於探討馬兜鈴酸 I 如何調控 blcap 基因和 gremlin 基因。首先利用不同濃度的馬兜鈴酸處理 HEK293 (人類胚胎腎臟細胞株)、NRK-52E (大鼠近曲小管上皮細胞株) 和 HT1376 (人類膀胱癌細胞株) 24 小時後,發現 blcap mRNA 表現量減少。建構含有 blcap 啟動子片段的冷光報導基因質體,並將其轉染入 HEK293 細胞株後發現馬兜鈴酸會有效抑制 blcap 啟動子所驅動的冷光活性,因此推測馬兜鈴酸在轉錄層次上調控 blcap 基因的表現,但是進一步縮短 blcap 啟動子片段長度進行冷光活性,卻無法找出馬兜鈴酸在啟動子上確切的調控位置。在另一方面,馬兜鈴酸並不會藉由 blcap 3’UTR 而影響報導基因的冷光活性,顯示馬兜鈴酸不會在後轉錄層次影響 blcap 基因的表達。在蛋白質層次上使用免疫螢光染色法觀察得知,BLCAP 蛋白質主要表現在 HEK293、 HT1376 和 HT1197 細胞株的細胞質中,而西方點墨法的結果也顯示 BLCAP 主要分布在細胞質。 降低 HT1376 細胞株中 blcap 基因的表現量導致細胞生長速度以及細胞遷移能力增加,同時提高 gremlin mRNA 表現量。進一步建構含有不同長度 gremlin 啟動子片段的冷光報導基因質體並且進行 HEK293 轉染,結果發現降低細胞中 blcap 表現可活化 gremlin 啟動子所驅動的冷光活性,並且推測 blcap 基因可能在 gremlin 啟動子 -889 ~ -380 的位置進行調控。利用不同濃度的馬兜鈴酸處理 HEK293、NRK-52E 和 HT1376 24小時會增加 gremlin mRNA 的表現量,但是在進行 gremlin 啟動子的冷光活性分析時則發現馬兜鈴酸並不會在轉錄層次上調控 gremlin 基因。最後以低劑量馬兜鈴酸長時間處理 HEK293 細胞株達 30 天,無論在細胞型態、blcap 或 gremlin 基因的表現量與對照組相比都沒有顯著差異。 綜合以上實驗數據可知,馬兜鈴酸經由轉錄層次抑制 blcap mRNA 的表現量,馬兜鈴酸雖然增加 gremlin mRNA 表現量,但是調控機轉未明。當 blcap 基因表現量下降時,細胞會出現類似癌化的現象同時也增加 gremlin mRNA,目前推測 blcap 基因藉由轉錄層次調控 gremlin mRNA 的表現。 | zh_TW |
| dc.description.abstract | Aristolochic acid (AA), a group of natural compound widely found in aristolochiaceae family of plants, is composed of AAI and AAII. AAI is nephrotoxic and carcinogenic to human and associated with urothelial carcinoma. IARC also classifies AA as a Group 1 human carcinogen. Bladder cancer-associated protein (BLCAP) with 10 kD is related with tumor development and cancer progression. Therefore, the blcap gene is supposed to be a tumor suppressor gene, but its molecular mechanisms are still not clear. Gremlin is known for its antagonistic reaction with bone morphogenetic proteins (BMPs) and plays an important role in cell growth and differentiation. Recent studies have indicated that Gremlin is involved in the regulation of cancer progression.
The main object of this study was to investigate that how AAI regulated the expression of blcap and gremlin gene. First, we treated HEK293, NRK-52E and HT1376 cells with different concentrations of AAI for 24 hours and found that the levels of blcap mRNA decreased. A series of luciferase reporter plasmids containing various promoter regions of blcap were constructed and then transfected into HEK293 cells. AAI significantly inhibited the blcap promoter-derived luciferase activity, suggesting that AAI modulated blcap gene expression at transcriptional level. However, the promoter deletion assay did not reveal the regulatory site which was modulated by AAI. On the other hand, AAI did not affect the luciferase activity of the reporter construct containing blcap-mRNA-3’UTR. From the viewpoint of protein, both immunofluorescence staining and western blotting showed that the BLCAP protein mainly located in the cytoplasmic part in HEK293, HT1376 and HT1197 cells. Decreasing the expression of blcap in HT1376 not only promoted the growth rate and migration ability of cells, but also increased the levels of gremlin mRNA. A series of luciferase reporter plasmids containing various regions of gremlin promoter were constructed and transfected into HEK293 cells. We found that reducing the blcap expression could enhance the gremlin promoter activity, and the regulatory regions on gremlin might be located at nucleotides -889 to -380. AAI treatment also increased the expression of gremlin mRNA in HEK293, NRK-52E and HT1376 cells. However, AAI did not altered the luciferase activity driven by gremilin promoter. Finally, HEK293 cells treated with low dose of AAI for 30 days did not change the cellular morphology and the levels of blcap and gremlin mRNA comparing to the solvent-treated group. In summary, the above data suggest that AAI inhibited the blcap mRNA at the transcriptional level with unknown mechanisms. Additionally, decreasing blcap mRNA resulted in cellular carcinogenesis and also promoted the gremlin expression. The blcap may regulate the gremlin expression at the transcription level. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:02:41Z (GMT). No. of bitstreams: 1 ntu-104-R02447010-1.pdf: 3897326 bytes, checksum: 47efee46aa4b16e02129e85deec51c04 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii 第一章 緒論 (Introduction) 1 1.1 馬兜鈴酸 (Aristolochic acid) 1 1.1.1 馬兜鈴酸的基本介紹 1 1.1.2 馬兜鈴酸腎病變 1 1.1.3 馬兜鈴酸的腎毒性 2 1.1.4 馬兜鈴酸的致癌性 3 1.2 膀胱癌相關蛋白質 (Bladder cancer associated protein, BLCAP) 5 1.2.1 膀胱癌相關介紹 5 1.2.2 膀胱癌相關蛋白質 (BLCAP) 相關介紹 5 1.2.3 BLCAP 的功能 6 1.3 Gremlin 蛋白質 9 1.3.1 Gremlin 蛋白質相關介紹 9 1.3.2 Gremlin的生理功能 9 1.3.3 Gremlin 蛋白質和癌症的相關性 10 1.4 研究動機 12 第二章 材料和方法 (Materials and Methods) 13 2.1實驗材料 13 2.1.1試劑 13 2.1.2質體 15 2.1.3儀器 15 2.2實驗方法 16 2.2.1 細胞培養 16 2.2.2 細胞冷凍保存 16 2.2.3 細胞解凍 17 2.2.4 核醣核酸萃取(RNA extraction) 17 2.2.5 反轉錄作用(Reverse transcription reaction) 18 2.2.6 半定量聚合連鎖反應(Semi – quantitative PCR) 18 2.2.7 洋菜瓊膠電泳 (Agarose gel electrophoresis) 18 2.2.8 質體建構 19 2.2.9 大腸桿菌之基因轉型 (E.coli Transformation) 19 2.2.10 質體萃取(Plasmid extraction) 20 2.2.11 細胞轉染 (Transfection ) 20 2.2.12 冷光報導基因活性分析 I (Luciferase reporter assay) 20 2.2.13 冷光報導基活性分析 II (Dual-Luciferase reporter assay) 21 2.2.14 免疫螢光染色 (immuonofluorescence staning) 22 2.2.15 細胞核質蛋白分離收集 22 2.2.16 西方墨點法 (Western blot) 23 2.2.17 慢病毒感染 (Lentivirus infection) 23 2.2.18 傷口癒合實驗 (Wound healing assay) 24 2.2.19 影像分析 24 2.2.20 統計分析 (Statistic analysis) 24 第三章 實驗結果 (Result) 25 3.1 馬兜鈴酸抑制 blcap mRNA 表現量 25 3.2 馬兜鈴酸抑制 blcap 啟動子的活性 25 3.3 馬兜鈴酸不會影響 blcap mRNA 3’UTR 冷光活性 26 3.4 BLCAP 蛋白質在不同細胞株中的分布情況和表現量 27 3.5 馬兜鈴酸抑制 BLCAP 蛋白質的表現量 27 3.6 blcap基因表現量降低促進 HT1376細胞生長速度及細胞遷移能力 28 3.7 blcap基因表現量的降低會增加gremlin mRNA 表現量 28 3.8 blcap基因表現量的降低會增加 gremlin 啟動子活性 29 3.9 馬兜鈴酸增加 gremlin mRNA 表現量 29 3.10 馬兜鈴酸抑制 gremlin 啟動子的活性 30 3.11 長期處理馬兜鈴酸對 HEK293 細胞的影響 30 第四章 討論 (Discussion) 32 第五章 參考文獻 (References) 37 第六章 圖表 45 第七章 附錄 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | gremlin 啟動子 | zh_TW |
| dc.subject | 馬兜鈴酸 | zh_TW |
| dc.subject | blcap | zh_TW |
| dc.subject | gremlin | zh_TW |
| dc.subject | blcap 啟動子 | zh_TW |
| dc.subject | aristolochic acid | en |
| dc.subject | blcap promoter | en |
| dc.subject | gremlin | en |
| dc.subject | blcap | en |
| dc.subject | gremlin promoter | en |
| dc.title | 馬兜鈴酸對於腎臟細胞株中 blcap 和 gremlin 基因的影響 | zh_TW |
| dc.title | The effect of aristolochic acid on blcap and gremlin gene expression in kidney cell lines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭鈞文(Chun-Wen Cheng),楊建洲(Jiann-Jou Yang),陳佩貞(Pei-Jen Chen) | |
| dc.subject.keyword | 馬兜鈴酸,blcap,gremlin,blcap 啟動子,gremlin 啟動子, | zh_TW |
| dc.subject.keyword | aristolochic acid,blcap,gremlin,blcap promoter,gremlin promoter, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
