請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51989完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹建和(Jenho Tsao) | |
| dc.contributor.author | Tz Hau Huang | en |
| dc.contributor.author | 黃子豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:01:33Z | - |
| dc.date.available | 2015-08-25 | |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | [1] Medwin, H. Counting bubbles acoustically: a review Ultrasonics
(1977) 15 7-13 [2] N. de Jong “Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements” Ultrasonics 1992 Vol 30 No 2 [3] Lars Hoff “Oscillations of polymeric microbubbles: Effect of the encapsulating shell” J. Acoust. Soc. Am. 107 (4), April 2000 [4] B. D. Johnson and R. C. Cooke,“Bubble populations and spectra in coastal waters: A photographic approach,” J. Geophys. Res., vol. 84,pp. 3761–3766, 1979. [5] A. L. Walsh and P. J. Mulhearn, “Photographic measurements of bubble populations from breaking wind waves at sea,” J. Geophys. Res., vol.92, pp. 14553–14565, 1987. [6] P. Geissler and B. Jぴahne, “Laboratory and inshore measurements of bubble size distributions,” in Natural Physical Processes Associated with Sea Surface Sound, Proc. Fourth Int. Conf. Natural Physical Processes Related to Sea Surface Sound 1997 University of Southampton, England,1997, pp. 147–154. [7] V. L. Newhouse and P. M. Shankar, “Bubble size measurement usin the nonlinear mixing of two frequencies,” J. Acoust. Soc. Amer., vol.75, pp. 1473–1477, 1984. [8] L. G. Leighton, R. J. Lingard, A. J. Walton, and J. E. Field, “Acoustic bubble sizing by the combination of subharmonic emissions with an imaging frequency,” Ultrasonics, vol. 29, pp. 319–323,1991. [9] L. G. Leighton, D. G. Ramble, and A. D. Phelps, “The detection of tethered and rising bubbles using multiple acoustic techniques,” J.Acoust. Soc. Amer., vol. 101, pp. 2626–2636, 1997. [10] V. L. Newhouse and P. M. Shankar“Bubble Sizing with High Spatial Resolution”IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.37, No 1 January 1990 [11] Sevin Vagle and David M.Farmer“The Measurement of Bubble-Size Distributions by Acoustical Backscatter”American Meteorological Society 1992. [12] JEAN-MARIE GORCE, MARCEL ARDITI, AND MICHEL SCHNEIDER “Influence of Bubble Size Distribution on the Echogenicity of Ultrasound Contrast Agents” INVESTIGATIVE RADIOLOGY Volume 35, Number 11, 661–671 2000. [13] Ramani Duraiswami “Bubble counting using an inverse acoustic scattering method” J. Acoust. Soc. Am. 104 (5), November 1998 [14] N. de Jong and L. Hoff,“Ultrasound scattering properties of Albunex microspheres, ”Ultrasonics 31, 175–181(1993). [15] Leighton TG. The acoustic bubble. London, UK: Academic Press; 1994. [16] P. M. Morse and K. U. Ingard, Theoretical Acoustics. Princeton, NJ:Princeton, 1968 [17] Jon N. Marsh, “Frequency and concentration dependence of the backscatter coefficient of the ultrasound contrast agent Albunex” J. Acoust. Soc. Am. 104 (3), Pt. 1, September 1998 [18] M. O’Donnell and J. G. Miller,“Quantitative broadband ultrasonic backscatter: An approach to nondestructive evaluation in acoustically inhomogeneous materials” J. Appl. Phys. 52, 1056–1065(1981). [19] L Hoff, “Acoustic characterization of contrast agents for medical ultrasound imaging” 2001- p.20 [20] JASON L. RAYMOND, “BROADBAND ATTENUATION MEASUREMENTS OF PHOSPHOLIPID-SHELLED ULTRASOUND CONTRAST AGENTS” Ultrasound in Med. & Biol., Vol. 40, No. 2, pp. 410–421, 2014 [21] J. W. Caruthers and P. A. Elmore “An iterative approach for approximating bubble distributions from attenuation measurements” J. Acoust. Soc. Am. 106 (1), July 1999 [22] H. Medwin, “Acoustical determinations of bubble-size spectra,”J. Acoust. Soc.Am. 62, 1041–1044 ~1977. [23] K. Commander and E. Moritz, “Off-resonance contributions to acoustical bubble spectra,”J. Acoust. Soc. Am. 85, 2665–2669 ~1989. [24] H. Medwin, “In situ acoustic measurements of microbubbles at sea,”J. Geophys. Res. 82 No. 6, 971–976 ~1977. [25] K. W. Commander and R. J. McDonald,“Finite-element solution to the inverse problem in bubble swarm acoustics,”J. Acoust. Soc. Am. 89, 592–597 ~1991. [26] H. Czerski, “An Inversion of Acoustical Attenuation Measurements to Deduce Bubble Populations”, J. Atmos. Oceanic Technol, 29, 1139-1148 (2012). [27] M Frank, P Wolfe “An algorithm for quadratic programming” Naval research logistics quarterly, 1956 [28] Byrd, R.H., J. C. Gilbert, and J. Nocedal, 'A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming,' Mathematical Programming, Vol 89, No. 1, pp. 149–185, 2000. [29] Coleman, T.F. and Y. Li, 'An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds,' SIAM Journal on Optimization, Vol. 6, pp. 418–445, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51989 | - |
| dc.description.abstract | 微氣泡分佈是一種顆粒大小和數量的分佈,不同顆粒大小的微氣泡有著不同的共振頻率,此共振頻率會讓微氣泡在該頻率下會有最強的回波訊號,傳統上估測微氣泡大小的方法有很多種,迭代近似法、非線性雙頻率估測法等,然而這些方法只能估測分佈較大的微氣泡分佈,對於欲估測小顆微氣泡分佈有許多的限制,今我們使用的方法欲改良上述所說無法求得微氣泡分佈較小的限制,所估測的微氣泡半徑介於1um-10um。
本研究模擬如何利用微氣泡衰減以反矩陣的方式來估測微氣泡分佈,使用的微氣泡分佈模型為瑞利分佈,以掃頻的方式來模擬發射不同頻率的窄頻pulse下其單顆微氣泡的反射訊號和頻譜上強度的變化,並使用bubblesim模擬散射訊號和計算出散射截面積,消光截面積和微氣泡衰減,再套入衰減關係式來利用反矩陣和奇異值分解方法來計算微氣泡大小分佈。 最後探討在實際情況下探頭和雜訊對於估測微氣泡衰減的影響和困難度,探頭會讓其中心頻以外的發射訊號減弱,加上受到雜訊影響SNR會變的很低,近而讓估測出來的微氣泡衰減失去原本的曲線特性,因此我們必須調整這兩個參數讓得到的衰減曲線符合實際情況,最後才能探討使用奇異值分解估測微氣泡分佈的準確性。 | zh_TW |
| dc.description.abstract | Bubble size distribution is a distribution of particle size and number of different particle size. Each bubble size have different resonant frequency. And the resonant frequency of bubble will make strong scatter signal at that frequency. Estimate the bubble size distribution can help to decide what the frequency of transmit signal will produce strongest scatter signal. In traditional, there are many methods to estimate bubble size distribution, ex: iterative approach and linear double frequency. However, these methods can only estimate the distribution of larger bubble distribution. If want to estimate the distribution of small bubble there will be many limitations. The method we use is to improve the restriction of the estimation small size distribution(1um~10um).
In this study, we use the inverse matrix to estimate the bubble size distribution. We assume the distribution follow the Rayleigh distribution. We use frequency sweep to transmit narrowband pulse signal and see the single bubble scatter signal. Then we use bubblesim to calculate scatter cross section, extinction cross section and attenuation. Use the relationship between attenuation and extinction cross section and inverse matrix, SVD method to calculate the bubble size distribution. Finally, we discuss the probe and noise impact and the difficulty of estimating the attenuation of bubble in the real situation. The probe will make the transmit signal weaken except the center frequency. And under the noise effect the transmit signal SNR will become very low. Then let the bubble attenuation loss original curve characteristic. Therefore, we need to adjust these two parameter to let the attenuation curve accord with real situation. Final, explore the accuracy method of use singular value decomposition to estimation bubble distribution. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:01:33Z (GMT). No. of bitstreams: 1 ntu-104-R01945024-1.pdf: 2313863 bytes, checksum: 16b61b30c22707fdd1a6ca4d70eca05a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 #
致謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF FIGURES ix Chapter1 緒論 1 1.1基本介紹 1 1.1.1規模和尺寸 1 1.1.2 微氣泡散射模型 2 1.1.3震盪現象 3 1.2研究動機 4 1.2.1 微氣泡分佈應用和討論 4 1.2.2 微氣泡分佈模擬問題描述 6 1.3論文架構 7 Chapter2 微氣泡分佈與衰減理論 8 2.1 對比劑特性 8 2.1.1微氣泡機率密度函數 9 2.2 微氣泡殼層特性及共振頻 11 2.3 微氣泡衰減性質 12 2.3.1 消光截面積 12 2.3.2 微氣泡衰減 14 Chapter3 微氣泡分佈估測限制與討論 16 3.1離散化 16 3.2微氣泡大小分佈估測 18 3.2.1微氣泡衰減與分佈關係 18 3.2.2 取樣間格限制 19 3.3 反矩陣運算 23 3.3.1 反矩陣運算限制 23 3.3.2 奇異值分解 26 3.3.3 奇異值分解限制 30 3.4 訊號流程 32 3.4.1 發射訊號 32 3.4.2 探頭響應 33 3.4.3 微氣泡衰減 35 3.5 微氣泡隨機性質 37 3.5.1 微氣泡流動性 37 3.5.2 隨機微氣泡大小取樣對∆a的影響 39 3.5.3 Nmin的限制 43 Chapter4 微氣泡分佈探討 45 4.1 微氣泡衰減計算與估測 45 4.1.1 Bubblesim模擬(單顆散射訊號) 45 4.1.2 利用Bubblesim 計算微氣泡散射截面積 49 4.1.3 探頭對微氣泡衰減估測影響 52 4.1.4 範圍選取(fmin~fmax) 59 4.1.5 雜訊對微氣泡衰減估測影響 61 4.2 Quadratic programming 64 4.2.1 奇異值分解方法失效 64 4.2.3 有限條件下求出微氣泡分佈 66 Chapter5 結論 69 REFERENCE 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 衰減 | zh_TW |
| dc.subject | 微氣泡分布 | zh_TW |
| dc.subject | bubble attenuation | en |
| dc.subject | bubble size distribution | en |
| dc.title | 利用微氣泡衰減估測微氣泡大小分佈 | zh_TW |
| dc.title | Estimation of the bubble size distribution by bubble attenuation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅孟宗(Mentzung Lo),張儀中 | |
| dc.subject.keyword | 微氣泡分布,衰減, | zh_TW |
| dc.subject.keyword | bubble size distribution,bubble attenuation, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
