請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51984完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李昆達 | |
| dc.contributor.author | Kai-Chun Lin | en |
| dc.contributor.author | 林愷浚 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:01:14Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | Agnihotri S, Dutt D, Tyagi CH, Kumar A, Upadhyaya JS (2010) Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World Journal of Microbiology and Biotechnology. 26:1349-1359. Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Applied microbiology and biotechnology. 84:19-35. Akhtar M, Blanchette R, Kent Kirk T (1997) Fungal delignification and biomechanical pulping of wood. Biotechnology in the Pulp and Paper Industry. 57:159-195 Barry VC, Dillon T (1940) Occurrence of xylans in marine algae. Nature. 146:3692-3696. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Applied microbiology and biotechnology. 56:326-338. Biely P (1985) Microbial xylanolytic systems. Trends in Biotechnology. 3:286-290. Birijlall N, Manimaran A, Kumar KS, Permaul K, Singh S (2011) High level expression of a recombinant xylanase by Pichia pastoris NC38 in a 5 L fermenter and its efficiency in biobleaching of bagasse pulp. Bioresource technology. 102:9723-9729. Bonnin E, Le Goff A, Saulnier L, Chaurand M, Thibault JF (1998) Preliminary characterisation of endogenous wheat arabinoxylan-degrading enzymic extracts. Journal of Cereal Science. 28:53-62. Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Current opinion in structural biology. 11:593-600. Cano A, Palet C (2007) Xylooligosaccharide recovery from agricultural biomass waste treatment with enzymatic polymeric membranes and characterization of products with MALDI-TOF-MS. Journal of Membrane Science. 291:96-105. Dekker RF, Richards GN (1976) Hemicellulases: their occurrence, purification, properties, and mode of action. Advances in carbohydrate chemistry and biochemistry. 32:277-352. Dey D, Hinge J, Shendye A, Rao M (1992) Purification and properties of extracellular endoxylanases from alkalophilic thermophilic Bacillus sp. Canadian Journal of Microbiology. 38:436-442. Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. Journal of industrial microbiology and biotechnology. 39:851-860. Esteban R, Villanueva JR, Villa TG (1982) Beta-D-xylanases of Bacillus circulans Wl-12. Canadian Journal of Microbiology. 28:733-739. Fang TJ, Liao BC, Lee SC (2010) Enhanced production of xylanase by Aspergillus carneus M34 in solid-state fermentation with agricultural waste using statistical approach. New biotechnology. 27:25-32. Frost G, Moss D (1987) Production of enzymes by fermentation. Biotechnology. Fu JJ, Yang XX, Yu CW (2008) Preliminary research on bamboo degumming with xylanase. Biocatalysis and Biotransformation. 26:450-454. Garg N, Mahatman KK, Kumar A (2010) Xylanase: applications and biotechnological aspects: biotechnological aspects of xylanase. LAP LAMBERT Academic Publ. Helianti I, Nurhayati N, Ulfah M, Wahyuntari B, Setyahadi S (2010) Constitutive high level expression of an endoxylanase gene from the newly isolated Bacillus subtilis AQ1 in Escherichia coli. Journal of biomedicine and biotechnology. Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene. 81:83-95. Henrissat B, Coutinho PM (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods in enzymology. 330:183-201. Ichishima E, Kato M, Wada Y, Kakiuchi H, Takeuchi M, Takahashi T (1982) Spore fatty-acid composition in Bacillus-Natto, a Food Microorganism. Food Chemistry. 8:1-9. Jiang ZQ, Deng W, Li LT, Ding CH, Kusakabe I, Tan SS (2004) A novel, ultra-large xylanolytic complex (xylanosome) secreted by Streptomyces olivaceoviridis. Biotechnology Letters. 26:431-436. Joseleau JP, Cartier N, Chambat G, Faik A, Ruel K (1992) Structural features and biological activity of xyloglucans from suspension-cultured plant cells. Biochimie. 74:81-88. Kluepfel D, Vatsmehta S, Aumont F, Shareck F, Morosoli R (1990) Purification and characterization of a new xylanase (xylanase-B) produced by Streptomyces lividans 66. Biochemical Journal. 267:45-50 Kunst F, Ogasawara N, Moszer I, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 390:249-256. Leathers TD, Kurtzman CP, Detroy RW (1984) Overproduction and regulation of xylanase in Aureobasidium pullulans and Cryptococcus albidus. Biotechnology and Bioengineering. 225-240. Lee SF, Forsberg CW, Rattray JB (1987) Purification and characterization of two endoxylanases from Clostridium acetobutylicum ATCC 824. Applied and environmental microbiology. 53:644-650. Lin LL, Thomson JA (1991) Cloning, sequencing and expression of a gene encoding a 73-Kda xylanase enzyme from the rumen anaerobe Butyrivibrio fibrisolvens H17c. Molecular and General Genetics. 228:55-61. Loera Corral O, Villasenor-Ortega F, Guevara-Gonzalez R, Torres-Pacheco I (2006) Xylanases. Advances in agricultural and food biotechnology. 305-322. Mathrani IM, Ahring BK (1992) Thermophilic and alkalophilic xylanases from several Dictyoglomus isolates. Applied microbiology and biotechnology. 38:23-27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31:426-428. Morosoli R, Bertrand JL, Mondou F, Shareck F, Kluepfel D (1986) Purification and properties of a xylanase from Streptomyces lividans. Biochemical journal. 239:587-92. Paul J, Varma AK (1990) Influence of sugars on endoglucanase and beta-xylanase activities of a Bacillus Strain. Biotechnology Letters. 12:61-64. Perez-Avalos O, Ponce-Noyola T, Magana-Plaza I, de la Torre M (1996) Induction of xylanase and β-xylosidase in Cellulomonas flavigena growing on different carbon sources. Applied microbiology and biotechnology. 46:405-409. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Applied microbiology and biotechnology. 67:577-591. Poutanen K, Tenkanen M, Korte H, Puls J (1991) Accessory enzymes involved in the hydrolysis of xylans. Enzymes in Biomass Conversion. 460:426-436. Purkarthofer H, Sinner M, Steiner W (1993) Cellulase-free xylanase from Thermomyces lanuginosus: Optimization of production in submerged and solid-state culture. Enzyme and Microbial Technology. 15:677-682. Ratto M, Poutanen K, Viikari L (1992) Production of xylanolytic enzymes by an alkalitolerant Bacillus Circulans strain. Applied microbiology and biotechnology. 37:470-473. Saleem M, Aslam F, Akhtar MS, Tariq M, Rajoka MI (2012) Characterization of a thermostable and alkaline xylanase from Bacillus sp. and its bleaching impact on wheat straw pulp. World journal of microbiology and biotechnology. 28:513-522. Srivastava R, Srivastava AK (1993) Characterization of a bacterial xylanase resistant to repression by glucose and xylose. Biotechnology Letters. 15:847-852. Stalin T, Priya BS, Selvam K (2012) Ecofriendly application of cellulase and xylanase producing marine Streptomyces clavuligerus as enhancer in biogas production from waste. African Journal of Environmental Science and Technology. 6:258-262. Subramaniyan S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. Fems Microbiology Letters. 183:1-7. Sumi H, Banba T, Kishimoto N (1996) Strong pro-urokinase activators proved in Japanese soybean cheese natto. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi. 43:1124-1127. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia. 43:1110-1111. Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology. 17:39-67. Tan SS, Li DY, Jiang ZQ, Zhu YP, Shi B, Li LT (2008) Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C. Bioresource technology. 99:200-204. Thomson JA (1993) Molecular biology of xylan degradation. FEMS microbiology reviews. 10:65-82. Uffen RL (1997) Xylan degradation: a glimpse at microbial diversity. Journal of Industrial Microbiology Biotechnology. 19:1-6. Valls C, Roncero MB (2009) Using both xylanase and laccase enzymes for pulp bleaching. Bioresource technology. 100:2032-2039. Verma D, Satyanarayana T (2012) Molecular approaches for ameliorating microbial xylanases. Bioresource technology. 117:360-367. Whitehead TR, Cotta MA (2001) Identification of a broad-specificity xylosidase/arabinosidase important for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonas ruminantium GA192. Current microbiology. 43:293-298. Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiological reviews 52:305-317. Wong KKY, Saddler JN (1992) Trichoderma xylanases, their properties and application. Critical Reviews in Biotechnology. 12:413-435. Yang R, Xu S, Wang Z, Yang W (2005) Aqueous extraction of corncob xylan and production of xylooligosaccharides. Lwt-Food Science and Technology. 38:677-682. Yoon H, Han N, Kim C (2004) Expression of Thermotoga maritima endo-β-1, 4-xylanase gene in E. coli and characterization of the recombinant enzyme. Agricultural Chemistry and Biotechnology. 林軒立,2010。納豆菌漆酶之異源表現。國立臺灣大學生命科學院微生物與生化學研究所碩士論文。 張惠芬,2014。由Paenibacillus macerans生產耐熱型木聚醣酶。國立臺灣大學生命科學院生化科技學系碩士班論文。 石馥維,2005。血纖維分解酶subtilisin NAT之發酵生產研究。國立臺灣大學生命科學院微生物與生化學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51984 | - |
| dc.description.abstract | 由本實驗室所篩選出具有產生最高活性之木聚醣酶之Bacillus subtilis natto #14,其發酵上清液酵素最適活性條件為pH 5、50℃。利用合成培養基之銨鹽化合物及少量酵母萃取物作為氮源,並比較葡萄糖、蔗糖、木糖、甘油對其生長之影響,以葡萄糖作為最適培養碳源。使用多種誘導木聚醣酶之誘導取代物,如山毛櫸木聚醣、小麥麩皮、黃豆粉、白楊木,發現10%小麥麩皮所誘導之木聚醣酶活性比使用山毛櫸木聚醣誘導之對照組更高。測試葡萄糖對誘導木聚醣酶之影響,發現葡萄糖並不抑制木聚醣酶生成,且可誘導更多木聚醣酶活性產生。以合成培養基於搖瓶培養後第12小時可獲得12.1 U/mL的木聚醣酶活性,而於發酵槽饋料培養後在第12個小時可獲得最高木聚醣酶活性59.2 U/mL。 | zh_TW |
| dc.description.abstract | Bacillus subtilis natto #14 has the highest xylanase activity which optimum temperature and pH is 50℃ and pH 5. We used synthetic medium with ammonium salts and little yeast extract as nitrogen source. Compared with glucose, sucrose, xylose, and glycerol, the most suitable carbon source in growth stage was glucose. Compared with beechwood xylan, wheat bran, soya powder, and white poplar powder, the best inducer for xylanase production was wheat bran. Induction of xylanase activity by 10% wheat bran was higher than induction by beechwood xylan. While grown with glucose and xylan, we found that glucose would help to induce xylanase activity, instead of inhibition. While grown in synthetic medium by flask culture, we could obtain the xylanase activity with 12.1 U/mL for 12 hours. While grown in bioreactor, we could obtain the highest xylanase activity with 59.2 U/mL for 12 hours. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:01:14Z (GMT). No. of bitstreams: 1 ntu-104-R02b22027-1.pdf: 1696132 bytes, checksum: 44af9fdec10ba90886ca668af237679e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 II Abstract III 縮寫表 IV 中英文對照表 V 目錄 VI 圖表目錄 IX 第一章 前言 1 1.1 納豆菌 (Bacillus subtilis natto) 2 1.2 木聚醣 3 1.2.1 木聚醣 3 1.2.2 木聚醣降解系統 4 1.3 內切型木聚醣酶 (β-1,4-endoxylanase) 4 1.3.1 內切型木聚醣酶之分類 4 1.3.2 內切型木聚醣酶之特性 5 1.3.3 內切型木聚醣酶之誘導及調控 6 1.3.4 內切型木聚醣酶之應用 7 1.3.5 內切型木聚醣酶之來源與生產 9 1.4 研究動機與目的 10 1.5 研究大綱 11 第二章 材料與方法 13 2.1 菌株來源 14 2.2 納豆菌之篩選 14 2.3 木聚醣酶活性測定 14 2.4 納豆菌之搖瓶培養 15 2.5 生產木聚醣酶之誘導物篩選 15 2.6 碳源抑制木聚醣酶生產之測試 16 2.7 納豆菌之發酵槽培養 16 2.8 培養液中殘糖測定 17 第三章 結果 19 3.1 納豆菌篩選結果 20 3.2 木聚醣酶活性測試之反應條件最適化 20 3.3 納豆菌之搖瓶培養最適化 21 3.3.1 培養溫度 21 3.3.2 培養基碳源最適化 21 3.3.3 誘導物之篩選 21 3.3.4 木聚醣酶生產之誘導物條件最適化 22 3.4 葡萄糖對木聚醣酶生產之影響 22 3.5 納豆菌之發酵槽培養 23 第四章 討論與結論 27 4.1 討論 28 4.1.1 發酵槽生產木聚醣酶 28 4.1.2 不同發酵技術生產木聚醣酶 28 4.1.3 未來展望 29 4.2 結論 30 圖表 31 參考文獻 47 附錄 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 納豆菌 | zh_TW |
| dc.subject | 發酵槽 | zh_TW |
| dc.subject | 小麥麩皮 | zh_TW |
| dc.subject | 木聚醣 | zh_TW |
| dc.subject | 木聚醣? | zh_TW |
| dc.subject | bioreactor | en |
| dc.subject | wheat bran | en |
| dc.subject | xylan | en |
| dc.subject | Bacillus subtilis natto | en |
| dc.subject | xylanase | en |
| dc.title | 以納豆菌生產木聚醣酶 | zh_TW |
| dc.title | Production of xylanase using Bacillus subtilis natto | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鵬林,楊健志,劉?德 | |
| dc.subject.keyword | 納豆菌,木聚醣?,木聚醣,小麥麩皮,發酵槽, | zh_TW |
| dc.subject.keyword | Bacillus subtilis natto,xylanase,xylan,wheat bran,bioreactor, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
