Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51942
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君浩(Jiun-Haw Lee)
dc.contributor.authorSheng-Chieh Linen
dc.contributor.author林聖傑zh_TW
dc.date.accessioned2021-06-15T13:58:40Z-
dc.date.available2025-08-13
dc.date.copyright2020-09-22
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citation1. Rothberg, L. J.; Lovinger, A. J. Journal of Materials Research 2011, 11, (12), 3174- 3187.
2. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. Journal of Applied Physics 1989, 65, (9), 3610-3616.
3. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Applied Physics Letters 1999, 74, (3), 442-444.
4. Im, Y.; Byun, S. Y.; Kim, J. H.; Lee, D. R.; Oh, C. S.; Yook, K. S.; Lee, J. Y. Advanced Functional Materials 2017, 27, (13).
5. Lee, J.-H.; Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Leung, M.-k.; Chiu, T.-L.; Lin, C.-F. Journal of Materials Chemistry C 2019, 7, (20), 5874-5888.
6. Kawamura, Y.; Goushi, K.; Brooks, J.; Brown, J. J.; Sasabe, H.; Adachi, C. Applied Physics Letters 2005, 86, (7).
7. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Journal of Applied Physics 2001, 90, (10), 5048-5051.
8. Sun, D.; Ren, Z.; Bryce, M. R.; Yan, S. Journal of Materials Chemistry C 2015, 3, (37), 9496-9508.
9. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Applied Physics Letters 2001, 79, (13), 2082-2084.
10. Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Applied Physics Letters 2003, 82, (15), 2422-2424.
11. Lin, M.-S.; Yang, S.-J.; Chang, H.-W.; Huang, Y.-H.; Tsai, Y.-T.; Wu, C.-C.; Chou, S.-H.; Mondal, E.; Wong, K.-T. Journal of Materials Chemistry 2012, 22, (31).
12. Huang, H.; Yang, X.; Pan, B.; Wang, L.; Chen, J.; Ma, D.; Yang, C. Journal of Materials Chemistry 2012, 22, (26).
13. Pan, B.; Wang, B.; Wang, Y.; Xu, P.; Wang, L.; Chen, J.; Ma, D. Journal of Materials Chemistry C 2014, 2, (14), 2466-2469.
14. Pan, B.; Wang, B.; Wang, Y.; Xu, P.; Wang, L.; Chen, J.; Ma, D. J. Mater. Chem. C 2014, 2, (14), 2466-2469.
15. Huang, J. J.; Hung, Y. H.; Ting, P. L.; Tsai, Y. N.; Gao, H. J.; Chiu, T. L.; Lee, J. H.; Chen, C. L.; Chou, P. T.; Leung, M. K. Org Lett 2016, 18, (4), 672-5.
16. Chang, S. Y.; Lin, G. T.; Cheng, Y. C.; Huang, J. J.; Chang, C. L.; Lin, C. F.; Lee, J. H.; Chiu, T. L.; Leung, M. K. ACS Appl Mater Interfaces 2018, 10, (49), 42723-42732.
17. Jiang, Z.; Xu, X.; Zhang, Z.; Yang, C.; Liu, Z.; Tao, Y.; Qin, J.; Ma, D. Journal of Materials Chemistry 2009, 19, (41).
18. Tsuzuki, T.; Tokito, S. Applied Physics Letters 2009, 94, (3).
19. Dong, S. C.; Gao, C. H.; Zhang, Z. H.; Jiang, Z. Q.; Lee, S. T.; Liao, L. S. Phys Chem Chem Phys 2012, 14, (41), 14224-8.
20. Zhang, L.; Dong, S.-C.; Gao, C.-H.; Shi, X.-B.; Wang, Z.-K.; Liao, L.-S. Applied Physics A 2014, 118, (1), 381-387.
21. Chen, Y.-H.; Chen, C.-H.; Chang, C.-M.; Fan, B.-A.; Chen, D.-G.; Lee, J.-H.; Chiu, T.-L.; Chou, P.-T.; Leung, M.-k. Journal of Materials Chemistry C 2020, 8, (10), 3571-3579.
22. Song, W.; Lee, W.; Kim, K. K.; Lee, J. Y. Organic Electronics 2016, 37, 252-256.
23. Lee, J.; Jeong, C.; Batagoda, T.; Coburn, C.; Thompson, M. E.; Forrest, S. R. Nat Commun 2017, 8, 15566.
24. Peng, C.; Salehi, A.; Chen, Y.; Danz, M.; Liaptsis, G.; So, F. ACS Appl Mater Interfaces 2017, 9, (47), 41421-41427.
25. Zhao, C.; Li, C.; Li, Y.; Qiu, Y.; Duan, L. Materials Chemistry Frontiers 2019, 3, (6), 1181-1191.
26. Hong, K.; Lee, J.-L. Electronic Materials Letters 2011.
27. Kim, Y. D.; Kim, K.; Byun, M. S.; Choi, H.-J.; Lee, H. Japanese Journal of Applied Physics 2017, 56, (6S1).
28. Salehi, A.; Fu, X.; Shin, D. H.; So, F. Advanced Functional Materials 2019, 29, (15).
29. Saxena, K.; Jain, V. K.; Mehta, D. S. Optical Materials 2009, 32, (1), 221-233.
30. Lee, J. H.; Chen, K. Y.; Hsiao, C. C.; Chen, H. C.; Chang, C. H.; Kiang, Y. W.; Yang, C. C. Journal of Display Technology 2006, 2, (2), 130-137.
31. Feng, J.; Okamoto, T.; Simonen, J.; Kawata, S. Applied Physics Letters 2007, 90, (8).
32. Liu, J. S. Q.; Brongersma, M. L. Applied Physics Letters 2007, 90, (9).
33. Kabra, D.; Song, M. H.; Wenger, B.; Friend, R. H.; Snaith, H. J. Advanced Materials 2008, 20, (18), 3447-3452.
34. Huang, Y.; Min, C.; Yang, L.; Veronis, G. International Journal of Optics 2012, 2012, 1-13.
35. Battal, E.; Okyay, A. K. OPTICS LETTERS 2013.
36. Dutta Choudhury, S.; Badugu, R.; Ray, K.; Lakowicz, J. R. J Phys Chem C Nanomater Interfaces 2013, 117, (30), 15798-15807.
37. Xiang, C.; Koo, W.; So, F.; Sasabe, H.; Kido, J. Light: Science Applications 2013, 2, (6), e74-e74.
38. Ayenew, G. T.; Fischer, A. P.; Chan, C. H.; Chen, C. C.; Chakaroun, M.; Solard, J.; Peng, L. H.; Boudrioua, A. Opt Express 2014, 22 Suppl 6, A1619-33.
39. Cao, T.; Wei, C.; Zhang, L. Optical Materials Express 2014, 4, (8).
40. Sun, Y.; Forrest, S. R. Nature Photonics 2008, 2, (8), 483-487.
41. Koh, T. W.; Choi, J. M.; Lee, S.; Yoo, S. Adv Mater 2010, 22, (16), 1849-53.
42. Jiang, H.; Sun, J.; Zhang, J. Current Organic Chemistry 2012.
43. Bi, Y. G.; Feng, J.; Li, Y. F.; Zhang, X. L.; Liu, Y. F.; Jin, Y.; Sun, H. B. Adv Mater 2013, 25, (48), 6969-74.
44. Bi, Y. G.; Feng, J.; Liu, Y. S.; Li, Y. F.; Chen, Y.; Zhang, X. L.; Han, X. C.; Sun, H. B. Sci Rep 2014, 4, 7108.
45. Ding, W.; Wang, Y.; Chen, H.; Chou, S. Y. Advanced Functional Materials 2014, 24, (40), 6329-6339.
46. Ou, Q.-D.; Zhou, L.; Li, Y.-Q.; Shen, S.; Chen, J.-D.; Li, C.; Wang, Q.-K.; Lee, S.-T.; Tang, J.-X. Advanced Functional Materials 2014, 24, (46), 7249-7256.
47. Kim, J.-B.; Lee, J.-H.; Moon, C.-K.; Kim, K.-H.; Kim, J.-J. Organic Electronics 2015, 17, 115-120.
48. Qu, Y.; Slootsky, M.; Forrest, S. R. Nature Photonics 2015, 9, (11), 758-763.
49. Xiang, H.-Y.; Li, Y.-Q.; Zhou, L.; Xie, H.-J.; Li, C.; Ou, Q.-D.; Chen, L.-S.; Lee, C.-S.; Lee, S.-T.; Tang, J.-X. ACS Nano 2015.
50. Ou, Q. D.; Xu, L. H.; Zhang, W. Y.; Li, Y. Q.; Zhang, Y. B.; Zhao, X. D.; Chen, J. D.; Tang, J. X. Opt Express 2016, 24, (6), A674-81.
51. Riedel, D.; Wehlus, T.; Reusch, T. C. G.; Brabec, C. J. Organic Electronics 2016, 32, 27-33.
52. Xu, L. H.; Ou, Q. D.; Li, Y. Q.; Zhang, Y. B.; Zhao, X. D.; Xiang, H. Y.; Chen, J. D.; Zhou, L.; Lee, S. T.; Tang, J. X. ACS Nano 2016, 10, (1), 1625-32.
53. Mu, H.; Wei, B.; Xie, H.; Jiang, Y. Journal of Luminescence 2017, 192, 1110-1118.
54. Chen, H. W.; Lee, J. H.; Lin, B. Y.; Chen, S.; Wu, S. T. Light Sci Appl 2018, 7, 17168.
55. Jeon, S.; Lee, S.; Han, K.-H.; Shin, H.; Kim, K.-H.; Jeong, J.-H.; Kim, J.-J. Advanced Optical Materials 2018, 6, (8).
56. Qu, Y.; Kim, J.; Coburn, C.; Forrest, S. R. ACS Photonics 2018, 5, (6), 2453-2458.
57. Zhou, J.-G.; Hua, X.-C.; Chen, Y.-K.; Ma, Y.-Y.; Huang, C.-C.; Wang, Y.-D.; Fung, M.-K. Journal of Materials Chemistry C 2019, 7, (13), 3958-3964.
58. Han, K. H.; Kim, K.; Han, Y.; Kim, Y. D.; Lim, H.; Huh, D.; Shin, H.; Lee, H.; Kim, J. J. Advanced Materials Interfaces 2020.
59. Jin, Y.; Feng, J.; Zhang, X. L.; Bi, Y. G.; Bai, Y.; Chen, L.; Lan, T.; Liu, Y. F.; Chen, Q. D.; Sun, H. B. Adv Mater 2012, 24, (9), 1187-91.
60. Chen, N.-C.; Liao, C.-C.; Chen, C.-C.; Fan, W.-T.; Wu, J.-H.; Li, J.-Y.; Chen, S.-P.; Huang, B.-R.; Lee, L.-L. Nanoscale Research Letters 2014.
61. Li, J.-Y.; Chen, S.-P.; Siao, H.-J.; Wu, J.-H.; Chen, G.-Y.; Chen, C.-C.; Ho, S.-Y.; Lin, Y.-P.; Hsu, H.-H.; Lin, J.-S.; Jeng, M.-S.; Chen, N.-C.; Zeng, H.-K.; Juang, J.-Y. Applied Physics Letters 2017, 111, (9).
62. Zhang, M.; Chiu, T.-L.; Lin, C.-F.; Lee, J.-H.; Wang, J.-K.; Wu, Y. Solar Energy Materials and Solar Cells 2011, 95, (9), 2606-2609.
63. Li, L.; Guan, M.; Cao, G.; Li, Y.; Zeng, Y. Displays 2012, 33, (1), 17-20.
64. Chiu, T.-L.; Mandal, H.; Zhang, M.; Yang, S.-P.; Chuang, Y.-T. International Journal of Photoenergy 2013, 2013, 1-7.
65. Chiu, T.-L.; Chuang, Y.-T. Journal of Physics D: Applied Physics 2015, 48, (7).
66. Chen, C.-P. GIPO NTU Master thesis 2017.
67. Hsu, H.-C. GIPO NTU Master Thesis 2017.
68. Lin, J.-H. GIPO NTU Master thesis 2019.
69. Rhee, S. H.; Nam, K. b.; Kim, C. S.; Song, M.; Cho, W.; Jin, S. H.; Ryu, S. Y. ECS Solid State Letters 2014, 3, (5), R19-R22.
70. Kumar, S.; Patil, S. New Journal of Chemistry 2015, 39, (8), 6351-6357.
71. Sasabe, H.; Tanaka, D.; Yokoyama, D.; Chiba, T.; Pu, Y.-J.; Nakayama, K.-i.; Yokoyama, M.; Kido, J. Advanced Functional Materials 2011, 21, (2), 336-342.
72. Yokoyama, D.; Sasabe, H.; Furukawa, Y.; Adachi, C.; Kido, J. Advanced Functional Materials 2011, 21, (8), 1375-1382.
73. Su, S.-J.; Chiba, T.; Takeda, T.; Kido, J. Advanced Materials 2008, 20, (11), 2125-2130.
74. Tan, W.-Y.; Wang, R.; Li, M.; Liu, G.; Chen, P.; Li, X.-C.; Lu, S.-M.; Zhu, H. L.; Peng, Q.-M.; Zhu, X.-H.; Chen, W.; Choy, W. C. H.; Li, F.; Peng, J.; Cao, Y. Advanced Functional Materials 2014, 24, (41), 6540-6547.
75. Suh, M. C.; Chin, B. D.; Kim, M. H.; Kang, T. M.; Lee, S. T. Advanced Materials 2003, 15, (15), 1254-1258.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51942-
dc.description.abstract本論文有三個部分,第一部分介紹以咔唑(carbazole)與苯並咪唑(benzimidazole)衍生物為主體材料製作高效率藍色磷光與長壽命綠色磷光有機發光二極體,第二部分為高效率綠色磷光有機發光二極體之光萃取研究,第三部分為具有強共振腔效應之有機發光二極體壽命延長。
在第一部分我們使用台大化學所梁文傑教授實驗室所提供的三種具有咔唑與苯並咪唑之衍生物作為主體材料製作高效率藍色磷光與長壽命綠色磷光有機發光二極體。藉由增加咔唑的數量使得所有化合物的玻璃轉化溫度(Tg)皆在180 ℃以上。在這三種化合物中,9-(1,2-diphenyl-1H-benzo[d]imidazol-4-yl)-9H-3,6-di(N-carbazolyl)carbazole (4-3cbzBIZ)摻雜bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic)之藍色磷光有機發光二極體其最高電流效率、功率效率和外部量子效率分別為58.73 cd/A、59.31 lm/W和28.58%。而在4-3cbzBIZ中摻雜tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3)之綠色磷光有機發光二極體在初始亮度為30,000 cd/m2下的壽命為使用4,4’-Bis(N-carbazolyl)-1,1’-biphenyl (CBP)作為主體材料之3.03倍。
第二部分我們使用東華大學魏茂國教授實驗室所提供的三種不同週期之光柵(833.33, 416.67, 277.78 奈米)來製作綠色磷光有機發光二極體,藉由調控陽極及元件電洞傳輸層之厚度優化並搭配週期為416.67奈米的光柵作為內部結構且利用半球透鏡作為外部結構製作元件,最高可得52.59%的外部量子效率以及106%的外部量子效率增益,且利用偏振片量測並進行波導模態與表面電漿模態的光萃取分析。
第三部分我們以薄鋁金屬作為陽極製作有機發光二極體,並且比較了1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HAT-CN)與氧化鉬(MoOx)兩種不同的電洞注入層,其中以氧化鉬作為電洞傳輸層之有機發光二極體有較低的阻抗及較高的穩定性,此外我們比較了以薄鋁和氧化銦錫做為陽極之有機發光二極體元件表現。利用薄鋁作為陽極搭配氧化鉬作為電洞傳輸層之有機發光二極體在調控電子傳輸厚度優化後,在定電流密度下操作壽命為使用氧化銦錫為陽極之有機發光二極體的2.92倍。
zh_TW
dc.description.abstractThere are three topics in this thesis. First, we studied high-efficiency blue and long-lifetime green phosphorescent organic light-emitting diodes (PhOLEDs) by using carbazole and benzimidazole derivatives as host materials. Secondly, we studied light extraction through non-planar structures in high-efficiency green PhOLED. Lastly, we demonstrated the lifetime elongation of strong-cavity OLEDs.
In chapter 3, we used three benzimidazole derivatives with high glass transition temperature (Tg) over than 180 ℃, which were supplied by Prof. Man-Kit Leung’s group in Chemistry Department, National Taiwan University, as host materials for high-efficiency blue and long-lifetime green PhOLEDs. Among the three compounds, OLED with 9-(1,2-diphenyl-1H-benzo[d]imidazol-4-yl)-9H-3,6-di(N-carbazolyl)carbazole (4-3cbzBIZ) doped with bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) achieved highest efficiency as 58.73 cd/A, 59.31 lm/W and 28.58% in current efficiency, power efficiency and EQE, respectively. Besides, operation lifetime of green PhOLED with 4-3cbzBIZ doped with tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) had 3.03-times enhancement compared to that with 4,4’-Bis(N-carbazolyl)-1,1’-biphenyl (CBP) one.
In chapter 4, we studied the light extraction of green PhOLEDs with nanostructures (pitch = 833.33, 416.67, and 277.78 nm), which were supplied by Prof. Mao-Kuo Wei’s group, between the glass substrate and indium-zinc-oxide (IZO) anode. After optimizing thickness of IZO and hole-transport layer (HTL), green PhOLED with nanostructure and macrolens could achieve EQE value of 52.59% and enhancement ratio of 106%. Besides, we divided electroluminescence spectra into TE and TM mode to analyze light extraction mechanism.
In chapter 5, we used Al as the anode and compared device performances with molybdenum oxide (MoOx) and 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HAT-CN) as the hole-injection layer (HIL) materials. Device with MoOx as HIL resulted in lower impedance and better stability. Besides, we compared device anode with Al and indium tin oxide (ITO). After optimizing thickness of electron-transport layer (ETL), operation lifetime of device with Al/MoOx as the anode/HIL had 2.92-times enhancement than device with ITO anode.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:58:40Z (GMT). No. of bitstreams: 1
U0001-0708202021505100.pdf: 13730462 bytes, checksum: c057b76c35106b822a1836eab23468cb (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Content vi
Figure content ix
Table content xviii
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Operation principle of OLED 1
1.3 Host materials for blue phosphor and thermal stability of host material 4
1.3.1 Review of blue phosphorescent host materials 4
1.3.2 Review of thermal stability of host materials 11
1.4 OLED light extraction 18
1.4.1 High efficiency OLEDs with light extraction 20
1.5 Strong cavity OLEDs 28
1.6 Motivation 33
Chapter 2 Experiments 35
2.1 Introduction 35
2.1.1 Device fabrication 35
2.2 Measurement system 36
2.2.1 Brightness (B) – current density (J) – voltage (V), external quantum efficiency (EQE), and operation lifetime measurement 36
2.2.2 Integral sphere system 37
2.2.3 Nano-imprinting technique 38
2.2.4 Sputtering system 39
Chapter 3 Blue and green phosphorescent OLEDs with high-Tg hosts 41
3.1 Introduction 41
3.2 Photophysical properties of high-Tg hosts 44
3.3 Blue PhOLEDs with high-Tg hosts 47
3.3.1 Device performances of OLEDs with high-Tg material as the hosts 47
3.3.2 EOD and HOD of 4-3cbzBIZ 53
3.4 Green PhOLEDs with high-Tg host 55
3.5 Optimization of blue PhOLEDs with 1-3cbzBIZ host 63
3.5.1 Tuning FIrpic doping concentration 63
3.5.2 Tuning the thickness of ETL 67
3.6 Optimization of blue PhOLEDs with 2-3cbzBIZ host 72
3.6.1 Tuning FIrpic doping concentration 72
3.6.2 Tuning the thickness of ETL 77
3.7 Optimization of blue PhOLEDs with 4-3cbzBIZ host 82
3.7.1 Tuning FIrpic doping concentration 82
3.7.2 Tuning the thickness of ETL 87
3.7.3 Tuning the thickness of EML 91
3.7.4 Tuning the thickness of HTL 95
3.7.5 Probing the recombination zone in the EML of optimized PhOLED 99
3.8 Device optimization of green PhOLEDs with 4-3cbzBIZ host 103
3.8.1 Different ETL materials with 4-3cbzBIZ host and Ir(ppy)3 guest 103
3.8.2 Tuning Ir(ppy)3 doping concentration 110
3.9 Operation lifetime under elevated temperature 116
Chapter 4 Light extraction of green PhOLEDs 120
4.1 Introduction 120
4.2 Properties of sputtered IZO thin films 122
4.3 Device optimization of green PhOLEDs with IZO anode 125
4.3.1 IZO thickness tuning 125
4.3.2 HTL thickness tuning 129
4.4 Green PhOLEDs with nanostructure and macrolens 132
Chapter 5 Study on operation lifetime of strong-cavity OLEDs 159
5.1 Introduction 159
5.2 MDM-OLEDs with different HIL 160
5.3 Cavity tuning of MDM 162
5.3.1 Thickness tuning of HTL 163
5.3.2 Thickness tuning of ETL 170
5.4 Different HIL in high-efficiency phosphorescent MDM-OLED 180
Chapter 6 Conclusion 188
References 190
dc.language.isoen
dc.subject強共振腔zh_TW
dc.subject有機發光二極體zh_TW
dc.subject咔唑zh_TW
dc.subject玻璃轉化溫度zh_TW
dc.subject奈米結構zh_TW
dc.subject光萃取zh_TW
dc.subjectnanostructureen
dc.subjectstrong-cavityen
dc.subjectlight extractionen
dc.subjectorganic light-emitting diodeen
dc.subjectcarbazoleen
dc.subjectglass transition temperatureen
dc.title有機發光二極體光萃取研究,具高玻璃轉換溫度主體材料之磷光有機發光二極體與強共振腔有機發光二極體之壽命延長zh_TW
dc.titleStudy on light extraction enhancement of organic light emitting diode (OLED), phosphorescent OLED with high-Tg hosts, and lifetime elongation of strong-cavity OLEDen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱天隆(Tien-Lung Chiu),梁文傑(Man-Kit Leung),魏茂國(Mao-Kuo Wei),陳世溥(Shih-Pu Chen)
dc.subject.keyword有機發光二極體,咔唑,玻璃轉化溫度,奈米結構,光萃取,強共振腔,zh_TW
dc.subject.keywordorganic light-emitting diode,carbazole,glass transition temperature,nanostructure,light extraction,strong-cavity,en
dc.relation.page193
dc.identifier.doi10.6342/NTU202002669
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0708202021505100.pdf
  未授權公開取用
13.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved