請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51920
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏志平(Chih-Ping Wei) | |
dc.contributor.author | Chih-Yi Wang | en |
dc.contributor.author | 汪芷伊 | zh_TW |
dc.date.accessioned | 2021-06-15T13:57:23Z | - |
dc.date.available | 2020-08-21 | |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-08 | |
dc.identifier.citation | Baccianella, S., Esuli, A., Sebastiani, F. (2010). Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC). Bao, L., Lambert, P., Badia, T. (2019). Attention and lexicon regularized LSTM for aspect-based sentiment analysis. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. Barnes, J., Touileb, S., Øvrelid, L., Velldal, E. (2019). Lexicon information in neural sentiment analysis: a multi-task learning approach. In Proceedings of the 22nd Nordic Conference on Computational Linguistics. Blei, D. M., Ng, A. Y., Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. Brody, S., Elhadad, N. (2010). An unsupervised aspect-sentiment model for online reviews. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Byrkjeland, M., de Lichtenberg, F. G., Gambäck, B. (2018). Ternary Twitter sentiment classification with distant supervision and sentiment-specific word embeddings. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Ceron, A., Curini, L., Iacus, S. M., Porro, G. (2014). Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. New Media Society, 16(2), 340-358. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. Daval-Frerot, G., Bouchekif, A., Moreau, A. (2018). Epita at semeval-2018 task 1: Sentiment analysis using transfer learning approach. In Proceedings of The 12th International Workshop on Semantic Evaluation. Denecke, K., Deng, Y. (2015). Sentiment analysis in medical settings: New opportunities and challenges. Artificial Intelligence in Medicine, 64(1), 17-27. Deng, D., Jing, L., Yu, J., Sun, S. (2019). Sparse Self-Attention LSTM for Sentiment Lexicon Construction. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(11), 1777-1790. Deng, S., Sinha, A. P., Zhao, H. (2017). Adapting sentiment lexicons to domain-specific social media texts. Decision Support Systems, 94, 65-76. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Fu, P., Lin, Z., Yuan, F., Wang, W., Meng, D. (2018). Learning sentiment-specific word embedding via global sentiment representation. In Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence. Hamilton, W. L., Clark, K., Leskovec, J., Jurafsky, D. (2016). Inducing domain-specific sentiment lexicons from unlabeled corpora. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing. Hassan, A. U., Hussain, J., Hussain, M., Sadiq, M., Lee, S. (2017). Sentiment analysis of social networking sites (SNS) data using machine learning approach for the measurement of depression. In Proceedings of 2017 International Conference on Information and Communication Technology Convergence (ICTC). Hatzivassiloglou, V., McKeown, K. R. (1997). Predicting the semantic orientation of adjectives. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics. He, R., Lee, W. S., Ng, H. T., Dahlmeier, D. (2017). An unsupervised neural attention model for aspect extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). He, R., Lee, W. S., Ng, H. T., Dahlmeier, D. (2018). Effective attention modeling for aspect-level sentiment classification. In Proceedings of the 27th International Conference on Computational Linguistics. Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Hu, M., Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Jakob, N., Gurevych, I. (2010). Extracting opinion targets in a single and cross-domain setting with conditional random fields. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Ji, Y., Li, J., Yu, Y. (2018). Linguistic attention-based model for aspect extraction. In Proceedings of 2018 International Conference on Image and Video Processing, and Artificial Intelligence. Jin, W., Ho, H. H., Srihari, R. K. (2009). A novel lexicalized HMM-based learning framework for web opinion mining. In Proceedings of the 26th Annual International Conference on Machine Learning. Jozefowicz, R., Zaremba, W., Sutskever, I. (2015). An empirical exploration of recurrent network architectures. In Proceedings of International Conference on Machine Learning. Khan, F. H., Qamar, U., Bashir, S. (2017). A semi-supervised approach to sentiment analysis using revised sentiment strength based on SentiWordNet. Knowledge and Information Systems, 51(3), 851-872. Kim, S.-M., Hovy, E. (2004). Determining the sentiment of opinions. In Proceedings of the 20th International Conference on Computational Linguistics. Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882. Ku, L.-W., Liang, Y.-T., Chen, H.-H. (2006). Opinion extraction, summarization and tracking in news and blog corpora. In Proceedings of AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs. Lafferty, J., McCallum, A., Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th International Conference on Machine Learning, 282-289. Li, X., Bing, L., Li, P., Lam, W. (2019a). A unified model for opinion target extraction and target sentiment prediction. In Proceedings of the AAAI Conference on Artificial Intelligence. Li, X., Bing, L., Li, P., Lam, W., Yang, Z. (2018). Aspect term extraction with history attention and selective transformation. arXiv preprint arXiv:1805.00760. Li, X., Bing, L., Zhang, W., Lam, W. (2019b). Exploiting BERT for end-to-end aspect-based sentiment analysis. arXiv preprint arXiv:1910.00883. Li, X., Lam, W. (2017). Deep multi-task learning for aspect term extraction with memory interaction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167. Liu, B., Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In Mining Text Data (pp. 415-463): Springer. Liu, P., Joty, S., Meng, H. (2015). Fine-grained opinion mining with recurrent neural networks and word embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Liu, Q., Gao, Z., Liu, B., Zhang, Y. (2013). A logic programming approach to aspect extraction in opinion mining. In 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). Loshchilov, I., Hutter, F. (2017). Fixing weight decay regularization in adam. arXiv preprint arXiv:1711.05101. Ma, D., Li, S., Zhang, X., Wang, H., Sun, X. (2017). Cascading multiway attentions for document-level sentiment classification. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Margatina, K., Baziotis, C., Potamianos, A. (2019). Attention-based conditioning methods for external knowledge integration. arXiv preprint arXiv:1906.03674. Mechulam, N., Salvia, D., Rosá, A., Etcheverry, M. (2019). Building dynamic lexicons for sentiment analysis. Inteligencia Artificial, 22(64), 1-13. Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Proceedings of 31st Conference on Neural Information Processing Systems, 3111-3119. Mitchell, M., Aguilar, J., Wilson, T., Van Durme, B. (2013). Open domain targeted sentiment. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Mohammad, S. M., Kiritchenko, S., Zhu, X. (2013). NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. arXiv preprint arXiv:1308.6242. O'Connor, B., Balasubramanyan, R., Routledge, B. R., Smith, N. A. (2010). From tweets to polls: Linking text sentiment to public opinion time series. In Proceedings of Fourth International AAAI Conference on Weblogs and Social Media. Pang, B., Lee, L., Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical methods in Natural Language Processing. Pennington, J., Socher, R., Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365. Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O. (2016). Semeval-2016 task 5: Aspect based sentiment analysis. In Proceedings of 10th International Workshop on Semantic Evaluation (SemEval 2016). Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I. (2015). Semeval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S. (2014). SemEval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). Qiu, G., Liu, B., Bu, J., Chen, C. (2011). Opinion word expansion and target extraction through double propagation. Computational Linguistics, 37(1), 9-27. Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., Gatford, M. (1995). Okapi at TREC-3. NIST Special Publication Sp, 109, 109. Sang, E. T. K., Bos, J. (2012). Predicting the 2011 dutch senate election results with twitter. In Proceedings of the Workshop on Semantic Analysis in Social Media. Shin, B., Lee, T., Choi, J. D. (2016). Lexicon integrated CNN models with attention for sentiment analysis. arXiv preprint arXiv:1610.06272. Stone, P. J., Dunphy, D. C., Smith, M. S. (1966). The General Inquirer: A Computer Approach to Content Analysis. M.I.T. Press. Strapparava, C., Valitutti, A. (2004). Wordnet affect: an affective extension of wordnet. In Proceedings of the International Conference on Language Resources and Evaluation (LREC). Tan, Z., Wang, M., Xie, J., Chen, Y., Shi, X. (2018). Deep semantic role labeling with self-attention. In Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence. Tang, D. (2015). Sentiment-specific representation learning for document-level sentiment analysis. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. Tang, D., Qin, B., Feng, X., Liu, T. (2015a). Effective LSTMs for target-dependent sentiment classification. arXiv preprint arXiv:1512.01100. Tang, D., Wei, F., Qin, B., Yang, N., Liu, T., Zhou, M. (2015b). Sentiment embeddings with applications to sentiment analysis. IEEE Transactions on Knowledge and Data Engineering, 28(2), 496-509. Tang, D., Wei, F., Qin, B., Zhou, M., Liu, T. (2014a). Building large-scale twitter-specific sentiment lexicon: A representation learning approach. In Proceedings of the 25th International Conference on Computational Linguistics: Technical papers. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B. (2014b). Learning sentiment-specific word embedding for twitter sentiment classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Titov, I., McDonald, R. (2008). A joint model of text and aspect ratings for sentiment summarization. In Proceddings of the Annual Meeting of the Association for Computational Linguistics (ACL), 308-316. Täckström, O., McDonald, R. (2011). Semi-supervised latent variable models for sentence-level sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 569-574. Turney, P. D. (2002). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., Polosukhin, I. (2017). Attention is all you need. In Proceedings of 31st Conference on Neural Information Processing Systems. Velikovich, L., Blair-Goldensohn, S., Hannan, K., McDonald, R. (2010). The viability of web-derived polarity lexicons. In Proceedings of 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Wang, F., Lan, M., Wang, W. (2018). Towards a one-stop solution to both aspect extraction and sentiment analysis tasks with neural multi-task learning. In Proceedings of 2018 International Joint Conference on Neural Networks (IJCNN). Wang, K., Xia, R. (2016). A survey on automatical construction methods of sentiment lexicons. Acta Automatica Sinica, 42(4), 496-508. Wang, W., Pan, S. J. (2018). Recursive neural structural correspondence network for cross-domain aspect and opinion co-extraction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Wang, W., Pan, S. J., Dahlmeier, D., Xiao, X. (2016a). Recursive neural conditional random fields for aspect-based sentiment analysis. arXiv preprint arXiv:1603.06679. Wang, W., Pan, S. J., Dahlmeier, D., Xiao, X. (2017). Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In Proceedings of Thirty-First AAAI Conference on Artificial Intelligence. Wang, Y., Huang, M., Zhao, L. (2016b). Attention-based LSTM for aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Wilson, T., Wiebe, J., Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. Wu, Y. (2019). A neural multi-task learning for aspect extraction and sentiment classification. Unpublished master thesis, Department of Information Management, National Taiwan University, Retrieved from https://hdl.handle.net/11296/2mxjr9 Wu, Y., Zhang, Q., Huang, X.-J., Wu, L. (2009). Phrase dependency parsing for opinion mining. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Xia, Y., Cambria, E., Hussain, A., Zhao, H. (2015). Word polarity disambiguation using bayesian model and opinion-level features. Cognitive Computation, 7(3), 369-380. Xu, H., Liu, B., Shu, L., Yu, P. S. (2018). Double embeddings and cnn-based sequence labeling for aspect extraction. arXiv preprint arXiv:1805.04601. Yoon, J., Kim, H. (2017). Multi-channel lexicon integrated CNN-BiLSTM models for sentiment analysis. In Proceedings of the 29th Conference on Computational Linguistics and Speech Processing (ROCLING 2017). Zhang, L., Liu, B., Lim, S. H., O’Brien-Strain, E. (2010). Extracting and ranking product features in opinion documents. In Proceedings of International Conference on Computational Linguistic (COLING), 1462-1470. Zhang, M., Zhang, Y., Vo, D.-T. (2015). Neural networks for open domain targeted sentiment. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Zhang, Z., Lan, M. (2015). Learning sentiment-inherent word embedding for word-level and sentence-level sentiment analysis. In Proceedings of 2015 International Conference on Asian Language Processing (IALP). Zhu, J., Wang, H., Tsou, B. K., Zhu, M. (2009). Multi-aspect opinion polling from textual reviews. In Proceedings of the 18th ACM Conference on Information and Knowledge Management. Zhu, P., Qian, T. (2018). Enhanced aspect level sentiment classification with auxiliary memory. In Proceedings of the 27th International Conference on Computational Linguistics. Zhuang, L., Jing, F., Zhu, X.-Y. (2006). Movie review mining and summarization. In Proceedings of the 15th ACM International Conference on Information and Knowledge Management. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51920 | - |
dc.description.abstract | 基於屬性的情感分析(ABSA)是一種較精細的情感分析任務,此任務會根據給定的文本去分析評論者對目標實體的不同屬性所抱持的情感態度。隨著網路和社群媒體的快速發展,人們已習慣於在網路上表達自己對於一些事物的想法,從而累積了大量的使用者原創內容(UGC),例如電影或飯店評論。對於不管是個人還是公司來說,能夠得知使用者對特定主題的想法是非常有價值的,因為這些資訊可以幫助他們做出更好的購買決策(對消費者而言)、或行銷與產品改善決策(對產品或服務的提供公司而言)。為了從大量的文本中自動提取出使用者觀點,ABSA被廣泛應用。其中,用來表達情感的情感詞資訊應有助於辨識在文本中使用者評論的屬性與情感傾向。然而,我們觀察到比起其他情感分析相關的任務,透過將情感詞典作為外部資源來將意見資訊納入模型中的ABSA研究較少。在這項研究中,我們提出了一個ABSA的整合模型,也就是將其兩個子任務整合進一個模型中訓練,並通過添加輔助任務的形式將情感詞辨識納入我們的多任務學習框架來提高其性能。為了提供較精準的情感詞,我們將建構特定領域的情感詞典,並且在訓練時嘗試採用不同的建構模型,評估它們對ABSA性能的影響。最後,我們在兩個SemEval ABSA挑戰的基準資料集合上進行實驗,實驗結果顯示我們提出的方法可以勝過現今最先進的方法。 | zh_TW |
dc.description.abstract | Aspect-based sentiment analysis (ABSA) is a task of identifying fine-grained opinion polarity towards a specific aspect associated with an entity. With the rapid development of the Internet and social media, people have grown accustomed to expressing their opinions online, causing a massive accumulation of user-generated content (UGC), such as reviews on movies or hotels. Opinions toward specific topic from users are valuable to both individuals and corporations, since the information can help them make better purchase decisions (for individuals) or marketing and product improvement decisions (for corporations that provide services and products). To automatically extract opinions discussed in the huge amount of UGC, ABSA is widely applied. However, relatively few studies on ABSA have taken sentiment lexicons as an external resource and incorporated such information into the model, which should be helpful to support identifying the aspects and the sentiment attitudes expressed in the text. Therefore, we propose an integrated ABSA model that combines its two subtasks (i.e., aspect term extraction and aspect sentiment classification) together in a single model and attempt to improve its effectiveness by incorporating the sentiment term identification as an auxiliary task to the multi-task learning framework. Specifically, we will construct domain-specific sentiment lexicons by ourselves. Besides, we will adopt different models to construct sentiment lexicons and evaluate their effects on the effectiveness of ABSA. The experimental results over the two benchmark datasets of the SemEval ABSA challenge indicate that our proposed method can outperform the state-of-the-art performance benchmark. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:57:23Z (GMT). No. of bitstreams: 1 U0001-0708202022443400.pdf: 2277386 bytes, checksum: 0391e3e5c8c18a70a8755d6f6a76329c (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii Table of Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objectives 3 Chapter 2 Literature Review 6 2.1 Aspect-based Sentiment Analysis 6 2.2 Sentiment Lexicon 11 2.3 Summary 15 Chapter 3 Methodology 16 3.1 Problem Definition 16 3.2 Stage 1: Lexicon Construction 17 3.2.1 Overview 17 3.2.2 Phase 1: Sentiment-specific word embedding 20 3.2.3 Phase 2: Word-level Sentiment Analysis 23 3.3 Stage 2: Aspect-based Sentiment Analysis (ABSA) 23 3.3.1 Overview 23 3.3.2 Aspect Term Extraction (ATE) 26 3.3.3 Lexicon Sentiment Classification (LSC) 28 3.3.4 Aspect-based Sequence Labeling(ABSL) 29 3.3.5 Joint Training 29 Chapter 4 Empirical Evaluations 30 4.1 Datasets 30 4.2 Compared Methods 31 4.3 Experiment Settings 32 4.4 Results 33 4.5 Additional Experiment 39 Chapter 5 Conclusion 42 References 44 | |
dc.language.iso | en | |
dc.title | 類神經多任務學習結合情感詞典做屬性情感分析 | zh_TW |
dc.title | Neural Multi-task Learning Combined with Sentiment Lexicon for Aspect-based Sentiment Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳家齊(Chia-Chi Wu),楊錦生(Chin-Sheng Yang) | |
dc.subject.keyword | 深度學習,基於屬性的情感分析,多任務學習,屬性詞提取,情感分析,情感詞典, | zh_TW |
dc.subject.keyword | Deep learning,Aspect-based sentiment analysis,Multi-task learning,Aspect extraction,Aspect sentiment classification,Sentiment lexicon, | en |
dc.relation.page | 49 | |
dc.identifier.doi | 10.6342/NTU202002671 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-10 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0708202022443400.pdf 目前未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。