Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51909
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張博鈞(Po-Chun Chang)
dc.contributor.authorHui-Ting Luoen
dc.contributor.author羅蕙廷zh_TW
dc.date.accessioned2021-06-15T13:56:45Z-
dc.date.available2020-08-27
dc.date.copyright2020-08-27
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationAamodt, J. M. and D. W. Grainger (2016). 'Extracellular matrix-based biomaterial scaffolds and the host response.' Biomaterials 86: 68-82.
Alluri, R., A. Jakus, S. Bougioukli, W. Pannell, O. Sugiyama, A. Tang, R. Shah and J. R. Lieberman (2018). '3D printed hyperelastic 'bone' scaffolds and regional gene therapy: A novel approach to bone healing.' J Biomed Mater Res A 106(4): 1104- 1110.
Asa'ad, F., G. Pagni, S. P. Pilipchuk, A. B. Gianni, W. V. Giannobile and G. Rasperini (2016). '3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications.' Int J Dent 2016: 1239842.
Buser D, B. U., Wismeijer D, Lee JS, Kim JK, Park Y-C, Vanarsdall Jr RL (2007). 'Iti treatment guide, vol 1: Implant therapy in the esthetic zone for single-tooth replacements. .' Berlin: Quintessence.
Chang, H. C., C. Yang, F. Feng, F. H. Lin, C. H. Wang and P. C. Chang (2017). 'Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation.' J Formos Med Assoc 116(12): 973-981.
Chen, J., Z. Zhang, X. Chen, C. Zhang, G. Zhang and Z. Xu (2014). 'Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.' J Prosthet Dent 112(5): 1088-1095.e1081. Clementini, M., A. Morlupi, L. Canullo, C. Agrestini and A. Barlattani (2012). 'Success rate of dental implants inserted in horizontal and vertical guided bone regenerated areas: a systematic review.' Int J Oral Maxillofac Surg 41(7): 847-852. Daniel Buser, T. v. A. (2000). 'Surgical procedures in partially edentulouspatients with ITI implants.' Clin Oral Impl Res 11(Suppl): 83-100.
Dawood, A., B. Marti, V. Sauret-Jackson and A. Darwood (2015). '3D printing in dentistry.' BDJ 219: 521-529.
Degidi, M., G. Daprile, D. Nardi and A. Piattelli (2013). 'Buccal bone plate in immediately placed and restored implant with Bio-Oss(®) collagen graft: a 1-year follow-up study.' Clin Oral Implants Res 24(11): 1201-1205.
Donath, K. and G. Breuner (1982). 'A method for the study of undecalcified bones
and teeth with attached soft tissues*.' Journal of Oral Pathology Medicine 11(4): 318-326.
Huang, J., S. M. Best, W. Bonfield, R. A. Brooks, N. Rushton, S. N. Jayasinghe and M. J. Edirisinghe (2004). 'In vitro assessment of the biological response to nano-sized hydroxyapatite.' J Mater Sci Mater Med 15(4): 441-445.
Igawa, K., M. Mochizuki, O. Sugimori, K. Shimizu, K. Yamazawa, H. Kawaguchi, K. Nakamura, T. Takato, R. Nishimura, S. Suzuki, M. Anzai, U. I. Chung and N. Sasaki (2006). 'Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer.' J Artif Organs 9(4): 234-240.
Ishack, S., A. Mediero, T. Wilder, J. L. Ricci and B. N. Cronstein (2017). 'Bone regeneration in critical bone defects using three-dimensionally printed β- tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.' J Biomed Mater Res B Appl Biomater 105(2): 366-375.
Jakus, A. E., A. L. Rutz, S. W. Jordan, A. Kannan, S. M. Mitchell, C. Yun, K. D. Koube, S. C. Yoo, H. E. Whiteley, C. P. Richter, R. D. Galiano, W. K. Hsu, S. R. Stock, E. L. Hsu and R. N. Shah (2016). 'Hyperelastic 'bone': A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial.' Sci Transl Med 8(358): 358ra127.
Jensen, A. T., S. S. Jensen and N. Worsaae (2016). 'Complications related to bone augmentation procedures of localized defects in the alveolar ridge. A retrospective clinical study.' Oral Maxillofac Surg 20(2): 115-122.
Jing, Y., C. Quan, B. Liu, Q. Jiang and C. Zhang (2016). 'A Mini Review on the Functional Biomaterials Based on Poly(lactic acid) Stereocomplex.' Polymer Reviews 56(2): 262-286.
Kaigler, D., G. Avila, L. Wisner-Lynch, M. L. Nevins, M. Nevins, G. Rasperini, S. E. Lynch and W. V. Giannobile (2011). 'Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration.' Expert Opin Biol Ther 11(3): 375-385.
Karageorgiou, V. and D. Kaplan (2005). 'Porosity of 3D biomaterial scaffolds and osteogenesis.' Biomaterials 26(27): 5474-5491.
Kinoshita, Y. and H. Maeda (2013). 'Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications.' ScientificWorldJournal 2013: 863157.
Klammert, U., U. Gbureck, E. Vorndran, J. Rödiger, P. Meyer-Marcotty and A. C. Kübler (2010). '3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects.' J Craniomaxillofac Surg 38(8): 565-570.
Kotsovilis, S., I. Fourmousis, I. K. Karoussis and C. Bamia (2009). 'A systematic review and meta-analysis on the effect of implant length on the survival of rough- surface dental implants.' J Periodontol 80(11): 1700-1718.
L. Cordaro, H. T. (2014). ITI Treatment Guide Vloume 7. Quintessence Publishing Co, Ltd.
Lang, C. H. F. H. G. C. C. T. K. N. P. (2001). 'The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants®.' Clin Oral Implant Res. 9(3): 151-162.
Leukers, B., H. Gülkan, S. H. Irsen, S. Milz, C. Tille, M. Schieker and H. Seitz (2005). 'Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing.' Journal of materials science. Materials in medicine 16(12): 1121-1124.
Lin, H.-C., H.-S. Lee, T.-S. Chiueh, Y.-C. Lin, H.-A. Lin, Y.-C. Lin, T.-L. Cha and E. Meng (2014). 'Histopathological assessment of inflammation and expression of inflammatory markers in patients with ketamine-induced cystitis.' Molecular medicine reports 11.
Lin, K. F., S. He, Y. Song, C. M. Wang, Y. Gao, J. Q. Li, P. Tang, Z. Wang, L. Bi and G. X. Pei (2016). 'Low-Temperature Additive Manufacturing of Biomimic Three- Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration.' ACS Appl Mater Interfaces 8(11): 6905-6916.
Liu, C., J. Tong, J. Ma, D. Wang, F. Xu, Y. Liu, Z. Chen and C. Lao (2019). 'Low- Temperature Deposition Manufacturing: A Versatile Material Extrusion-Based 3D Printing Technology for Fabricating Hierarchically Porous Materials.' Journal of Nanomaterials 2019: 1291067.
Ma, P. X. (2008). 'Biomimetic materials for tissue engineering.' Advanced drug delivery reviews 60(2): 184-198.
Melcher, A. H., C. Maniatopoulos, A. Rodriguez and D. A. Deporter (1986). 'An improved method for preparing histological sections of metallic implants.' Int J Oral Maxillofac Implants 1(1): 31-37.
Merheb J, Quirynen M and T. W (2014). 'Critical buccal bone dimensions along implants.' Periodontology 2000 66: 97-105.
Moroni, L., J. R. de Wijn and C. A. van Blitterswijk (2006). '3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.' Biomaterials 27(7): 974-985.
Mravic, M., B. Péault and A. W. James (2014). 'Current Trends in Bone Tissue Engineering.' BioMed Research International 2014: 865270.
Noh, I. (2018). Biomimetic Medical Materials: From Nanotechnology to 3D Bioprinting, Springer.
O'Brien, F. J. (2011). 'Biomaterials scaffolds for tissue engineering.' Materials Today 14(3): 88-95.
Otsu, N. (1979). 'A Threshold Selection Method from Gray-Level Histograms.' IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66.
Park, C. H., H. F. Rios, A. D. Taut, M. Padial-Molina, C. L. Flanagan, S. P. Pilipchuk, S. J. Hollister and W. V. Giannobile (2014). 'Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces.' Tissue Eng Part C Methods 20(7): 533-542.
Pilipchuk, S. P., A. B. Plonka, A. Monje, A. D. Taut, A. Lanis, B. Kang and W. V. Giannobile (2015). 'Tissue engineering for bone regeneration and osseointegration in the oral cavity.' Dent Mater 31(4): 317-338.
Rahman, M. T., R. Moser, H. M. Zbib, C. V. Ramana and R. Panat (2018). '3D printed high performance strain sensors for high temperature applications.' Journal of Applied Physics 123(2): 024501.
Rasperini, G., S. P. Pilipchuk, C. L. Flanagan, C. H. Park, G. Pagni, S. J. Hollister and W. V. Giannobile (2015). '3D-printed Bioresorbable Scaffold for Periodontal Repair.' J Dent Res 94(9 Suppl): 153s-157s.
Rocchietta, I., F. Fontana and M. Simion (2008). 'Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review.' J Clin Periodontol 35(8 Suppl): 203-215.
Sarkar, R. and G. Banerjee (2010). 'Ceramic based bio-medical implants.' InterCeram: International Ceramic Review 59: 98-102.
Schortinghuis, J., J. L. Ruben, H. J. Meijer, A. L. Bronckers, G. M. Raghoebar and B. Stegenga (2003). 'Microradiography to evaluate bone growth into a rat mandibular defect.' Arch Oral Biol 48(2): 155-160.
Simion, M., F. Fontana, G. Rasperini and C. Maiorana (2007). 'Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (Bio Oss).' Clin Oral Implants Res 18(5): 620-629.
Thein-Han, W. and H. H. Xu (2011). 'Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering.' Tissue Eng Part A 17(23-24): 2943-2954.
Tonetti, M. S. and C. H. Hämmerle (2008). 'Advances in bone augmentation to enable dental implant placement: Consensus Report of the Sixth European Workshop on Periodontology.' J Clin Periodontol 35(8 Suppl): 168-172.
Tuncay, O. C. (2006). The Invisalign System. New Malden: Quintessence Publishing Vorndran, E., U. Klammert, A. Ewald, J. Barralet and U. Gbureck (2010). 'Simultaneous Immobilization of Bioactives During 3D Powder Printing of Bioceramic Drug-Release Matrices.' Advanced Functional Materials 20: 1585- 1591.
Yang, R., C. W. Davies Cm Fau - Archer, R. G. Archer Cw Fau - Richards and R. G. Richards 'Immunohistochemistry of matrix markers in Technovit 9100 New- embedded undecalcified bone sections.' (1473-2262 (Electronic)).
Yeong, W. Y., C. K. Chua, K. F. Leong and M. Chandrasekaran (2004). 'Rapid prototyping in tissue engineering: challenges and potential.' Trends Biotechnol 22(12): 643-652.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51909-
dc.description.abstract重建嚴重受損缺牙脊的型態為當今植牙重建治療的一大挑戰,本實驗旨在齒槽脊增加術的過程中使用一種羥基磷灰石為基底的三維旭翔空間列印支架來促進骨組織再生。
本實驗使用的三維空間列印支架利用以羥基磷灰石為基底的生物墨水,透 過微擠出法的列印方式進行製作。動物實驗驗證分為兩部分,第一部分透過大 鼠齒槽骨內相通缺損(intrabony through-and-through defect)模式探討此支架在 骨面較完備的缺損區域中對於骨再生效果的影響。實驗方式為在大鼠下頷角處 利用環鑽工具製備一個直徑 4 公分的圓型缺損,於此缺損中放置列印好的直徑 4 公分圓盤型三維空間支架作為測試組(group HA),對側下頷骨同樣缺損處則 不放置任何材料作為控制組(group Control)。動物於 4 週後犧牲,透過微電腦 斷層影像(micro-CT)以及組織切片進行骨再生的比較。
第二部分則是透過大鼠齒槽骨上再生(supracrestal ridge augmentation)模 式探討羥基磷灰石三維空間支架對於促進齒槽骨垂直方向骨再生以及與植體骨整合的表現。手術方式為將直徑 5 mm 高度 2.5mm 的圓柱形支架利用鈦金屬迷 你植體(titanium mini-implant)固定在下頷骨角頰側處作為測試組(group HA), 另外設計鈦金屬迷你植體周圍放置去礦物質化牛骨顆粒(group Graft),控制組 則單純放置迷你植體(group Control)。動物於四週及八週犧牲,透過微電腦斷 層影像(micro-CT)以及組織切片進行骨再生比較。
印製出的羥基磷灰石三維空間支架的孔洞直徑(pore size)為 420 ± 28 μm 及 328 ± 5 μm,纖維直徑為 449± 101 μm。在第一部分的動物實驗中,micro-CT 影像分析顯示 group HA 相對於 group Control 有顯著較多的礦化組織百分比, 在組織學切片分析上也可以在 group HA 中看到較明顯的骨缺損填補率,且有較 多的新生骨比例。第二部分的動物實驗中,micro-CT 影像可看到 Group HA 在 8 週的礦化組織比例上顯著較 4 週高;在四週及八週的 group HA 以及 group Graft 均有拱門狀(dome-shape)的新生骨再生痕跡,礦化組織百分比皆顯著高 於 group Control。在硬組織切片組織學觀察中可發現新生成骨小梁結構可在四 週及八週的 group HA 中觀察到,且新生骨與植體以及羥基磷灰石支架間的骨整 合也清楚可見。
本實驗的結果結果顯示利用三維空間印製的羥基磷灰石支架對於齒槽骨再生有正向的幫助,可進一步促進骨新生及植體骨整合。
zh_TW
dc.description.abstractPurpose:Alveolar ridge regeneration is a frequently required but challenging procedure for implant site preparation. The aim of this study was to investigate the potential of a novel 3D-printed hydroxyapatite scaffold for accelerating alveolar ridge regeneration.
Materials and Methods:Three-dimensional hydroxyapatite-based scaffolds with evenly distributed orthogonal pores were designed on a computer and printed using the microextrusion technique. Two animal models were investigated in this study. The first was the intrabony through-and-through defect model. On the mandibles of Sprague-Dawley rats, 4-mm-diameter through-and-through bony defects were surgically created and left unfilled (control group) or filled with the 4-mm-diameter and 0.5-mm-thick scaffold (HA group) for 4 weeks.
The second model involved supracrestal ridge augmentation with 3 experimental groups. Cylindrical scaffolds 5 mm in diameter and 2.5 mm in height were fixed with titanium mini-implants in one group (HA group). Another group was grafted with DBBM particles around the fixed implants (Graft group) and the other group was left ungrafted (control group). The observation periods were 4 weeks and 8 weeks. The therapeutic potential was evaluated using micro-computed tomography (micro-CT) and histology.
Results:The mean pore size of the scaffold was 0.42±0.028 mm by 0.328±0.005 mm, and the mean thickness was 0.449±0.101 mm. In the first animal experiment, the micro- CT images revealed greater mineralized tissue deposition within the defects in the HA group, and the mean bone volume/defect volume ratio was 14.21±2.57% in the control group and 29.38±1.94% in the HA group (p < 0.001). The histologic slides showed good scaffold-tissue and scaffold-bone integration, and the mean defect fill was 38.25±12.69% in the control group and 69.94±19.42% in the HA group (p < 0.001).
The micro-CT result of supracrestal ridge augmentation showed mineralized tissue ingrowth in the HA and control groups at both 4 weeks and 8 weeks and the bone volume/total volume ratio was significantly greater in the HA group than in the control group. The histologic slides showed new trabecular bone bridging between the remaining scaffolds and osseointegration was observed on the implant surface.
Conclusion:The 3D-printed HA scaffold demonstrated good osteoconductivity, was effective at promoting the repair of jawbone defects in rats, and showed potential for accelerating alveolar ridge regeneration.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:56:45Z (GMT). No. of bitstreams: 1
U0001-0708202023333900.pdf: 5016273 bytes, checksum: eadd0258a7d0b89e3245f9e62b1f229d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要.......................................2
Abstract......................................5
Content....................................8
Chapter 1: Introduction ................. 11
1.1 Alveolar Bone Augmentation............11
1.2 Bone Tissue Engineering ..............14
1.3 Three-Dimensional-Printed Scaffolds..................17
1.4 Three-Dimensional-Printed Hydroxyapatite Scaffolds in Alveolar Bone
Augmentation...................21
Chapter 2. Research Goal ............24
2.1 Hypothesis ......................... 24
2.2 Specific Aim ....................... 24
Chapter 3: Materials and Method.............................25
3.1 Hydroxyapatite-Based Scaffold Fabrication ............. 25
3.1.1 Intrabony Defect Scaffold ........................... 26
3.1.2 Supracrestal Ridge Augmentation Scaffold ............. 26
3.2 Animal Experiment: Intrabony Through-and-Through Defect ......... 28
3.2.1 Experimental Animal ............................ 28
3.2.2 Experimental Materials ..........................28
3.2.3 Experimental Grouping and Design................ 28
3.2.4 Surgical Procedure ............................. 29
3.2.5 Post-operative Care ............................ 30
3.2.6 Micro-CT Analysis .............................. 30
3.2.7 Histologic Assessment .......................... 31
3.2.8 Statistical Analysis ........................... 32
3.3 Animal Experiment: Supracrestal Ridge Augmentation Model ................ 34
3.3.1 Experimental Animal ............. 34
3.3.2 Experimental Materials ........................ 34
3.3.3 Experimental Grouping and Design............................ 35
3.3.4 Surgical Procedure ............. 35
3.3.5 Post-operative Care .................................... 37
3.3.7 Undecalcified Histologic Sample Preparation ................ 38
3.3.8 Histologic Assessment ...................................... 39
Chapter 4: Results.................................................40
4.1 Results of the Intrabony Defect Model ........................ 40
4.1.1 Intrabony Defect Scaffold .................................. 40
4.1.2 Micro-CT Analysis .................. 40
4.1.3 Histologic Findings ............... 41
4.2 Results of the Supracrestal Ridge Augmentation Model................. 42
4.2.1 Supracrestal Ridge Augmentation Scaffold ......................... 42
4.2.2 Micro-CT Analysis .......................... 42
4.2.3 Histologic Findings ........................ 43
Chapter 5: Discussion .............................45
5.1 General ...................................... 45
5.2 Intrabony Defect Model ....................... 46
5.3 Supracrestal Ridge Augmentation Model..................... 49
Chapter 6: Conclusion...................53
Figures.................................54
dc.language.isozh-TW
dc.subject骨再生zh_TW
dc.subject三維空間列印zh_TW
dc.subject齒槽骨再生zh_TW
dc.subject羥基磷灰石zh_TW
dc.subjecthydroxyapatiteen
dc.subjectbone regenerationen
dc.subjectalveolar ridge regenerationen
dc.subject3D-printeden
dc.title利用快速列印三維空間羥基磷灰石支架促進齒槽骨再生zh_TW
dc.titleAcceleration of Alveolar Ridge Regeneration Using a Rapidly Prototyped Three-Dimensional Hydroxyapatite-Based Scaffolden
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭彥彬(Yen-Ping Kuo),陳敏慧(Ming-Huey Chen),侯欣翰(Hsin-Han Hou),柯政全(Cheng-Chuan Ko)
dc.subject.keyword三維空間列印,齒槽骨再生,骨再生,羥基磷灰石,zh_TW
dc.subject.keyword3D-printed,alveolar ridge regeneration,bone regeneration,hydroxyapatite,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202002673
dc.rights.note有償授權
dc.date.accepted2020-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0708202023333900.pdf
  未授權公開取用
4.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved