Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51884
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥榮(Yen-Rong Chern)
dc.contributor.authorChih-Hsun Liaoen
dc.contributor.author廖志勳zh_TW
dc.date.accessioned2021-06-15T13:55:16Z-
dc.date.available2017-08-31
dc.date.copyright2015-08-31
dc.date.issued2015
dc.date.submitted2015-08-29
dc.identifier.citation1. J. Fevery, Bilirubin in clinical practice: a review. Liver International 28, 592-605 (2008).
2. A. L. Lehninger, D. L. Nelson, M. M. Cox, Lehninger principles of biochemistry. (W.H. Freeman, New York, ed. 6th, 2013).
3. T. Peters, All about albumin : biochemistry, genetics, and medical applications. (Academic Press, San Diego, Calif., 1996), pp. xx, 432 p., 432 p. of plates.
4. J. B. Thoden, X. Huang, F. M. Raushel, H. M. Holden, Carbamoyl-phosphate Synthetase: CREATION OF AN ESCAPE ROUTE FOR AMMONIA. Journal of Biological Chemistry 277, 39722-39727 (2002).
5. C.-C. T. Chung-Hsien Liu, and Hai-Hsiung Chen, The Diagnosis and Treatment Strategy of Hepatocellular Carcinoma. Journal of Internal Medicine of Taiwan 24, 85-94 (2013).
6. A. Guillouzo, Liver cell models in in vitro toxicology. Environmental health perspectives 106 Suppl 2, 511-532 (1998).
7. J. J. Maher, Primary hepatocyte culture: Is it home away from home? Hepatology 8, 1162-1166 (1988).
8. T. T. Chang, M. Hughes-Fulford, Molecular mechanisms underlying the enhanced functions of three-dimensional hepatocyte aggregates. Biomaterials 35, 2162-2171 (2014).
9. T. T. Lau, L. Q. Lee, W. Leong, D. A. Wang, Formation of model hepatocellular aggregates in a hydrogel scaffold using degradable genipin crosslinked gelatin microspheres as cell carriers. Biomedical materials 7, 065003 (2012).
10. L. Riccalton-Banks, C. Liew, R. Bhandari, J. Fry, K. Shakesheff, Long-term culture of functional liver tissue: three-dimensional coculture of primary hepatocytes and stellate cells. Tissue engineering 9, 401-410 (2003).
11. J. S. Hammond, I. J. Beckingham, K. M. Shakesheff, Scaffolds for liver tissue engineering. Expert Review of Medical Devices 3, 21-27 (2006).
12. G. D. Nicodemus, S. J. Bryant, Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications. Tissue Engineering Part B: Reviews 14, 149-165 (2008).
13. M. A. Woodruff, D. W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science 35, 1217-1256 (2010).
14. M. D. Bhavsar, M. M. Amiji, Development of Novel Biodegradable Polymeric Nanoparticles-in-Microsphere Formulation for Local Plasmid DNA Delivery in the Gastrointestinal Tract. AAPS PharmSciTech 9, 288-294 (2008).
15. C. P. Jiang, J. R. Huang, M. F. Hsieh, Fabrication of synthesized PCL‐PEG‐PCL tissue engineering scaffolds using an air pressure‐aided deposition system. Rapid Prototyping Journal 17, 288-297 (2011).
16. F. Yang, C. G. Williams, D. A. Wang, H. Lee, P. N. Manson, J. Elisseeff, The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26, 5991-5998 (2005).
17. J. Zhu, R. E. Marchant, Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices 8, 607-626 (2011).
18. J. A. Burdick, K. S. Anseth, Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23, 4315-4323 (2002).
19. S. Van Bael, T. Desmet, Y. C. Chai, G. Pyka, P. Dubruel, J. P. Kruth, J. Schrooten, In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration. Materials science & engineering. C, Materials for biological applications 33, 3404-3412 (2013).
20. H. J. Yen, C. S. Tseng, S. H. Hsu, C. L. Tsai, Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomedical microdevices 11, 615-624 (2009).
21. H. U. Zaman, J. M. M. Islam, M. A. Khan, R. A. Khan, Physico-mechanical properties of wound dressing material and its biomedical application. Journal of the Mechanical Behavior of Biomedical Materials 4, 1369-1375 (2011).
22. H. A. Awad, M. Q. Wickham, H. A. Leddy, J. M. Gimble, F. Guilak, Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25, 3211-3222 (2004).
23. T. Okano, N. Yamada, M. Okuhara, H. Sakai, Y. Sakurai, Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16, 297-303 (1995).
24. N. N. Kachouie, Y. Du, H. Bae, M. Khabiry, A. F. Ahari, B. Zamanian, J. Fukuda, A. Khademhosseini, Directed assembly of cell-laden hydrogels for engineering functional tissues. Organogenesis 6, 234-244 (2014).
25. J. P. Vacanti, R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354 Suppl 1, SI32-34 (1999).
26. H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of biomedical materials research. Part B, Applied biomaterials 74, 782-788 (2005).
27. I. Zein, D. W. Hutmacher, K. C. Tan, S. H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169-1185 (2002).
28. H. Suo, K. Xu, X. Zheng, Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds. Journal of Biomaterials Applications 29, 977-987 (2014).
29. A. I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, H. Berghmans, Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules 1, 31-38 (2000).
30. S. Aday, N. Hasirci, I. Deliloglu Gurhan, A cost-effective and simple culture method for primary hepatocytes. Animal Cells and Systems 15, 19-27 (2011).
31. J. A. Benton, C. A. DeForest, V. Vivekanandan, K. S. Anseth, Photocrosslinking of Gelatin Macromers to Synthesize Porous Hydrogels That Promote Valvular Interstitial Cell Function. Tissue Engineering Part A 15, 3221-3230 (2009).
32. Q. L. Loh, C. Choong, Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering Part B: Reviews 19, 485-502 (2013).
33. T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35, 49-62 (2014).
34. J. P. Li, P. Habibovic, M. van den Doel, C. E. Wilson, J. R. de Wijn, C. A. van Blitterswijk, K. de Groot, Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28, 2810-2820 (2007).
35. P. Occhetta, R. Visone, L. Russo, L. Cipolla, M. Moretti, M. Rasponi, VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding. Journal of Biomedical Materials Research Part A 103, 2109-2117 (2015).
36. K. Kiyohashi, S. Kakinuma, A. Kamiya, N. Sakamoto, S. Nitta, H. Yamanaka, K. Yoshino, J. Fujiki, M. Murakawa, A. Kusano-Kitazume, H. Shimizu, R. Okamoto, S. Azuma, M. Nakagawa, Y. Asahina, N. Tanimizu, A. Kikuchi, H. Nakauchi, M. Watanabe, Wnt5a signaling mediates biliary differentiation of fetal hepatic stem/progenitor cells in mice. Hepatology 57, 2502-2513 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51884-
dc.description.abstract近年來隨著3D印表機蓬勃發展,解決了組織工程支架在傳統工法上,製作困難且過程冗長的缺點,這項快速成型的技術,逐漸被應用到組織工程與再生醫學領域。由於肝臟器官包含多種細胞以及其臟器本身的複雜性,使得體外模型不易建立,且分離取得的原代肝細胞在短時間內即失去成熟肝臟基因的功能;本研究將上述技術應用於肝臟細胞的研究,由電腦預先設計好模型,將生物3D印表機做適當調整,接著將肝臟組織細胞包埋於膠體內,最後印出膠體支架模型。
以往作為支架常使用的熱塑性聚合物並不適用於包埋細胞,於是在材料上改用光固化高含水膠體作為支架主成分,在本研究中使用以明膠為主材料的光固化高含水膠體製作支架,明膠早已廣泛使用在藥學、食品、化妝品等各類產品上,研究發現也適用於細胞培養,但是明膠本身在攝氏37度下強度不足以作為組織支架主結構,必需進一步處理以提升其支撐強度。
本研究提出改良甲基丙烯酸修飾處理明膠的製程,取得高親水性光固化膠體,成為可以支撐組織細胞的支架,同時以核磁共振儀偵測光固化膠體水溶液,以確認取代反應的完成度。生物印表機改裝自開源社群的3D印表機,並解決原始設計以熱塑性聚合體材料無法包埋細胞的問題,重新設計出可以列印膠體的噴頭和光固化模組,建構完成可以列印製作軟組織支架的生物3D印表機。
在掃描式電子顯微鏡下觀察支架模型,最高精細度可達到300μm,且膠體支架具有許多孔隙,對於細胞貼附、養分擴散均有正面效果。本研究中的肝臟細胞支架的技術,肝臟細胞可以在膠體支架中順利生長,且在第五天仍繼續表現成熟肝臟基因。這項技術未來有潛力廣泛應用到軟組織支架、肝臟體外培養以及組織工程。
zh_TW
dc.description.abstract3D printing moved from being theoretical to a reality, and in recent years 3D printers have become cheaper to produce. Nowadays, 3D bio-printing has been widely used in tissue engineering and regenerative medicine. This rapid prototyping technology provide a great opportunity to fabricate 3D scaffolds without problems such as restricted geometric shapes in traditional methods. In this research, we modified an open-source 3D printer project, originally printed thermoplastic polymer which was not support soft tissue and cell encapsulation. Thus, we designed a bio-printer including photo-crosslinking module and redesign syringe pump extruder of 3D printer. In the experiments, we used gelatin hydrogel, instead of thermoplastics, as main material of scaffold. Gelatin is commonly used in pharmaceutics, food, cosmetics, as well as cell culture. However, gelatin has poor mechanical properties at 37˚C to be the main structure of a tissue scaffold. Therefore, further processing is required to strengthen for gelatin. In this study, we demonstrated optimized methacrylation of gelatin forming a highly hydrophilic photo-crosslinkable hydrogel. The hydrogel is analyzed by NMR spectra to monitor degree of functionalization. Because of complexity of liver, it is hard to create in vitro liver model. Moreover, isolated primary hepatocytes rapidly lose its mature hepatic functions after culturing in 2D environment due to loss of ECM and intercellular interaction. We applied 3D bio-printing technology in creating hepatocyte laden hydrogel scaffold. Porous hydrogel scaffold was design by CAD software and printed by our well-calibrated 3D bio-printer reaching 300μm precision. Also scanning electron microscopy analysis was involved to confirm porous structure of the hydrogel scaffold offering cell attachment and nutrient dispersion well. In our research, primary hepatocytes expressed mature hepatic markers after 5 days cultured in our 3D hydrogel scaffolds. We believed this technology opens new possibilities for the application of 3D bio-printing in liver tissue engineering.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:55:16Z (GMT). No. of bitstreams: 1
ntu-104-R01b22017-1.pdf: 1979972 bytes, checksum: cd7f42f163510caf24e10cb4b97b3f7a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAcknowledgement i
中文摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables viii
Introduction 1
Method and Materials 9
Cell culture 9
Cell line 9
Primary mouse hepatocyte isolation 9
Gelatin methacrylate hydrogel 10
3D printer assembly 11
Quantitative PCR 12
LIVE/DEAD® Cell Viability Assay 12
Scanning electron microscopy 13
Immunofluorescence staining 13
Results 15
3D printer assembly and remolding 15
Gelatin molecule modification and qualification 16
Scaffold structure 19
Hydrogel shows good bio-capabilities 19
Primary hepatocyte encapsulation shows pro-longed mature markers 20
Immunofluorescence staining 21
Discussion 22
Conclusion 26
Reference 40
dc.language.isoen
dc.title光聚合含水膠體及3D成形技術於肝臟細胞培養之應用zh_TW
dc.titlePhoto-crosslinkable hydrogel and 3D rapid prototyping technology application for primary hepatocyte cultureen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江宏仁(Hong-Ren Jiang),李明家(Ming-Chia Li)
dc.subject.keyword組織工程,肝臟細胞,生物印表機,水凝膠,再生醫學,zh_TW
dc.subject.keywordtissue engineering,hepatocyte,bio-printing,hydrogel,regenerative medicine,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2015-08-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved