Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51883
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘(Der-Ming Yeh)
dc.contributor.authorYen-Ting Wangen
dc.contributor.author王嬿婷zh_TW
dc.date.accessioned2021-06-15T13:55:12Z-
dc.date.available2016-09-04
dc.date.copyright2015-09-04
dc.date.issued2015
dc.date.submitted2015-08-31
dc.identifier.citation1. 王寶山. 2010. 植物逆境生物學. 高等教育出版社. 北京.
2. 朱德民. 1995. 植物與環境逆境. 國立編譯館. 臺北市. 臺灣.
3. 行政院農委會. 農業統計年報(102年). 7 July 2014.
< http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx>
4. 邱奕璇. 2012. 菊花耐淹水指標與水分生理. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
5. 孫憲芝、郭先鋒、鄭成淑、王文莉、梁芳. 2008. 高溫脅迫下外源鈣對菊花葉片光合機構與活性氧清除酶系统的影響. 應用生態學報 19:1983-1988.
6. 高景輝. 1987. 淹水與植物發育. 科學農業叢書第三十號. 科學農業社編印. 臺灣. 臺北.
7. 許謙信. 2010. 利用嫁接選育菊花耐淹水砧木. 臺中區農業改良場研究彙報106:1-9.
8. 許謙信、王仕賢. 2005. 菊花. 臺灣農家要覽農作篇(二). 行政院農業委員會. 臺灣. 臺北. p.657-668.
9. 許謙信、葉德銘. 2007. 菊花耐淹水品種系之選拔. 臺中區農業改良場研究彙報96:23-32.
10. 陳昱心. 2012. 介質特性與栽培管理對綠屋頂植物生育之特性. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
11. 劉仲維、郭純德、尤進欽. 2011. 氯化鈣預處理對減輕甜椒幼苗受淹水傷害之效果. 臺灣園藝57:157-170.
12. Ahmed, S., E. Nawata, and T. Sakuratani. 2002a. Effects of waterlogging at vegetative and reproductive growth stages on photosynthesis, leaf water potential and yield in mungbean. Plant Prod. Sci. 5:117-123.
13. Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae, and T. Sakuratani. 2002b. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163:117-123.
14. Ahmed, S., E. Nawata, and T. Sakuratani. 2006. Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging. Environ. Expt. Bot. 57:278-284.
15. Arbona, V., M. F. L&oacute;pez-Climent, R.M. P&eacute;rez-Clemente, and A. G&oacute;mez-Cadenas. 2009. Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ. Expt. Bot. 66:135-142.
16. Aroca, R., R. Porcel, and J.M. Ruiz-Lozano. 2012. Regulation of root water uptake under abiotic stress conditions. J. Expt. Bot. 1:43-57.
17. Ashraf, M. and S. Mehmood. 1990. Effects of waterlogging on growth, and some physiological parameters of four Brassica species. Plant Soil 121:203-209.
18. Ashraf, M.A. 2012. Waterlogging stress in plants: A review. African J. Agr. Res. 7:1976-1981.
19. Bar-Yosef, B. and J.H. Leith. 2013. Effects of oxygen concentration in solution and uptake rate by roots on cut roses yield, and nutrients and sugars content in leaves. Scientia Hort. 155:49-55.
20. Beckman, T.G., R.L. Perry, and J.A. Flore. 1992. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. HortScience 27:1297-1301.
21. Biemelt, S., U. Keetman, and C. Albrecht. 1998. Re-aeration following hypoxia or anoxia to activation of the antioxidative defense system in roots of wheat seedling. Plant. Physiol. 116:651-658.
22. Blokhina, O., E. Virolainen, and K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 91:179-194.
23. Bowler, C. and R. Fluhr. 2000. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5:241-246.
24. Bradford, K.J. 1983. Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol. 73:475-479.
25. Brady, N.C. and R.R. Weil. 2002. The nature and properties of soils. 13th ed. Prentice Hall, Upper Saddle River, N.J.
26. Burrows, W.J. and D.J. Carr. 1969. Effect of flooding the root system of sunflower plants on the cytokinin content in the xylem sap. Physiol. Plant 22:1105-1112.
27. Bush, D.S. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:95-122.
28. Chang, Y.J., Y.T. Chang, and H.J. Chen. 2007. A method for controlling hydrogen sulfide in water by adding solid phase oxygen. Bioresource Technol. 98:478-483.
29. Chugh, V., A.K. Gupta, M.S. Grewal, and N. Kaur. 2012. Response of antioxidative and ethanolic fermentation enzymes in maize seedlings of tolerant and sensitive genotypes under short term waterlogging. Indian J. Expt. Biol. 50:577-582.
30. Desikan, R., M.K. Cheung, J. Bright, D. Henson, J.T. Hancock, and S.J. Neill. 2004. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Expt. Bot. 55:205-212.
31. Drew, M.C., B.G. Cobb, J.R. Johnson, D. Andrews, P.W. Morgan, W. Jordan, and C.J. He. 1994. Metabolic acclimation of roots tips to oxygen deficiency. Ann. Bot. 74:281-286.
32. Foster, J.G. and J.L. Hess. 1980. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66:482-487.
33. Fulton, J.M. and A.E. Erickson. 1964. Relation between soil aeration and ethyl alcohol accumulation in xylem exudate of tomatoes. Proc. Soil. Sci. Soc. Amer. 28:610-614.
34. Gadallah, M.A.A. 1995. Effect of waterlogging and kinetin on the stability of leaf membranes, leaf osmotic potential, soluble carbon and nitrogen compounds and chlorophyll content of Ricinus plants. Phyton 35:199-208.
35. Gao, H., Y. Jia, S. Guo, G. Lv, T. Wang, and L. Juan. 2011. Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance. J. Plant Physiol. 168:1217-1225.
36. Garc&iacute;a‐S&aacute;nchez, F., J.P. Syvertsen, V. Gimeno, P. Bot&iacute;a, and J.G. Perez‐Perez. 2007. Responses to flooding and drought stress by two citrus rootstock seedlings with different water‐use efficiency. Physiol. Planta. 130:532-542.
37. Gibbs, J. and H. 2003. Greenway. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functim. Plant Biol. 30:353-353.
38. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.
39. Gilliham, M., M. Dayod, B.J. Hocking, B. Xu, S.J. Conn, B.N. Kaiser, R.A. Leigh, and S.D. Tyerman. 2011. Caclium delivery and storage in plant leaves: Explore the link with water flow. J. Expt. Bot. 62:2233-2250.
40. Gindin, E., T. Tirosh, and S. Mayak. 1989. Effects of flooding on ultranstructure and ethylene production in chrysamthemum. Acta Hort. 262:171-183.
41. He, K.Y., J. Yang, and L.B. Huang. 2008. Physiological responses of seedlings of two oak species to flooding stress. For. Study China 10:259-264.
42. Health, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198.
43. Hepler, P.K. 2005. Calcium: A central regulator of plant growth and development. Plant Cell 17:2142-2155.
44. Horchani, F., A. Aloui, R. Brouquisse, and S. Aschi-Smiti. 2008. Physiological responses of tomato plants (Solanum lycopersicum) as affected by root hypoxia. J. Agron. Crop Sci. 194:297-303.
45. Huang, B., X. Liu, and J.D. Fry. 1998a. Effects of high temperature and poor soil aeration on root growth and viability of creeping bentgrass. Crop Sci. 38:1618-1622.
46. Huang, B., X. Liu, and J.D. Fry. 1998b. Shoot physiological response of two bentgrass cultivars to high temperature and poor soil aeration. Crop Sci. 38:1219-1224.
47. Hurng, W.P. and C.H. Kao. 1994. Effect of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescing tobacco leaves. Plant Growth Regulat. 14:37-44.
48. Iacona, C., M.Cirilli, A. Zege, and E. Frioni. 2013. A somaclonal myrobalan rootstock increases waterlogging tolerance to peach cultivars in controlled conditions. Scientia Hort. 156:1-8.
49. Irving, L.J., Y.B. Sheng, D. Woolley, and C. Matthew. 2007. Physiological effects of waterlogging on two Lucerne varieties grown under glasshouse conditions. J. Agr. Crop Sci. 193:345-356.
50. Ismail, M.R. and K.M. Noor. 1996. Growth and physiological processes of young starfruit (Averrhoa carambola L.) plants under soil flooding. Scientia Hort. 65:229-238.
51. Jackson, M.B. 1979. Rapid injury to peas by soil waterlogging. J. Sci. Food Agr. 30:143-152.
52. Jackson, M.B. and P.C. Ram. 2003. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot. 91:227-241.
53. Jamei, R., R. Heidari, J. Khara, and S. Zare. 2008. The interaction effects of flooding and kinetin on growth criteria, chlorophyll content, and 5-aminolevulinic acid dehydratase activity in corn seedlings. Turk. J. Biol. 32:253-257.
54. Jana, S. and M.A. Choudhuri. 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12:345-354.
55. Jiang, Y. and B. Huang. 2001. Effect of calcium on antioxidant activities and water relations associated with heat tolerance in two coolseason grasses. J. Expt. Bot. 52:110-116.
56. Jing, Y.X., G.L.Li, B.H. Gu, D.J. Yang, L. Xiao, R.X. Liu, and C.L.Peng. 2009. Leaf gas exchange, chlorophyll fluorescence and growth responses of Melaleuca alternifolia seedling to flooding and subsequent recovery. Photosynthetica 47:595-601.
57. Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can. J. Bot. 65:729-735.
58. Kleinhenz, M. and J.P. Palta. 2002. Root zone calcium modulates the response of potato plants to heat stress. Physol. Plant. 115:
59. Kozlowski, T.T. 1997. Response of woody plants to flooding and salinity. Trees Physiol. 1:1-29.
60. Kramer, P.J. 1951. Causes of injury to plants resulting from flooding of the soil. Plant Physiol. 26:722-736.
61. Kumar, P., M. Pal, R. Joshi, and R.K. Sairam. 2013. Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol. Mol. Biol. Plants 19:209-220.
62. Kumutha, D., K. Ezhilmathi, R.K. Sairam, G.C. Srivastava, P.S. Deshmukh, and R.C. Meena. 2009. Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biol. Plant. 53:75-84.
63. Lewty, M.J. 1990. Effects of waterlogging on growth and water relations of three Pinus Taxa. For. Ecol. Mgt. 30:189-201.
64. Liang, L., M. Wang, and X. Ai. 2009. The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress. Scientia Hort. 123:34-38.
65. Liao, C.T. and C.H. Lin. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Council, R.O.C. 25:148-157.
66. Lin, K. H., C.C. Weng, H.F. Lo, and J.T. Chen. 2004. Study of root antioxidative system of tomatoes and eggplants under waterlogged condition. Plant Sci. 167:355-365.
67. Lin, K.H., Y.K. Chiou, S.Y. Hwang, L.F.O. Chen, and H.F. Lo. 2008. Calcium chloride enhances the antioxidative system of sweet potato (Ipomoea batatas) under waterlogging stress. Ann. Appl. Biol. 2:157-168.
68. Lin, K.H., W.S. Kuo, C.M. Chiang, T.C. Hsiung, M.C. Chiang, and H.F. Lo. 2013. Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses. Scientia Hort. 333-340.
69. Malik, A., T.D. Colmer, H. Lambers, and M. Schortemeyer. 2001. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust. J. Plant Physiol. 28:1121-1131.
70. Malik, A.I., T.D. Colmer, H. Lambers, T.L. Setter, and M. Schortemeyer. 2002. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 153:225-236.
71. Mielke, M.S., A.A.F. de Almeida, F.P. Gomes, M.A.G. Aguilar, and P.A.O. Mangabeira. 2003. Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ. Expt. Bot. 50:221-231.
72. Murillo-Amador, B., H.G. Jones, C. Kaya, and R.L. Ahuilar. 2006. Effect of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environ. Expt. Bot. 58:188-196.
73. Naidoo, G. and S.G. Mundree. 1993. Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus L. Kunth. Oecologia. 93:360-366.
74. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
75. Olivella, C., C. Biel, M. Vendrell, and R. Save. 2000. Hormonal and physiologicalresponses of Gerbera jamesonii to flooding stress. HortScience 35:222-225.
76. Oosterhuis, D.M., H.D. Scott, R.E. Hampton, and S.D. Wullschleger. 1990. Physiological responses of two soybean [Glycine max (L.) Merr] cultivars to short-term flooding. Environ. Expt. Bot. 30:85-92.
77. Orchard, P.W. and R.S. Jessop. 1984. The response of sorghum and sunflower to short-term waterlogging. Plant Soil 81:119-132.
78. Pezeshki, S.R. 1994. Plant response to flooding. p. 289-321. In: R.E. Wilkinson, (ed.), Plant-environment interactions. Marcel Dek-ker, New York.
79. Pezeshki, S.R. 2001. Wetland plant responses to soil flooding. Environ. Expt. Bot. 46:299-312.
80. Pezeshki, S.R., J.H. Pardue, and R.D. DeLaune. 1996. Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions. Tree Physiol. 16:453-458.
81. Phillips, I.D.J. 1964. Root-shoot hormone relations. II. Changes in endogenous auxin concentration produced by flooding of the root system in Helianthus annuus. Ann. Bot. 28:37-45.
82. Pociecha, E., J. Kościelniak, and W. Filek. 2008. Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol. Plant. 30:529-535.
83. Sairam, R.K. and G.C. Srivastava. 2002. Changes in antioxidant activity in sub-cellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 162:897-904.
84. Sairam, R.K., D. Kumutha, K. Ezhilmathi, P.S. Deshmukh, and G.C. Srivastava. 2008. Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant. 52:401-412.
85. Sauter, M. 2013. Root responses to flooding. Curr. Opin. Plant Biol. 16:282-286.
86. Schroeder, J.I., J.M. Kwak, and G.J. Allen. 2001. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327-330.
87. Schwartz, A. 1985. Roles of Ca2+ and EGTA on stomatal movements in Commelina connunis L. Plant Physiol. 79:1003-1005.
88. Setter, T. and R. Belford. 1990. Waterlogging: How it reduces plant growth and how plants can overcomes its effects. J. Agri.Western Australia 31:51-55.
89. Shiono, K., H. Takahashi, T.D. Colmer, and M. Nakazono. 2008. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 175:52-58.
90. Simova-Stoilova, L., K. Demirevska, A. Kingston-Smith, and U. Fellerc. 2012. Involvement of the leaf antioxidant system in the response to soil flooding in two Trifolium genotypes differing in their tolerance to waterlogging. Plant Sci. 183:43-49.
91. Skutnik, M. and A.M. Rychter. 2009. Differential response of antioxidant systems in leaves and root of barly subjected to anoxia and post-anoxia. J. Plant Physiol. 166:926-937.
92. Smethurst, C.F. and S. Shabala. 2003. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 30:335-343.
93. Smethurst, C.F., T. Gatnett, and S. Shabala. 2005. Nutritional and chlorophyll fluorescence responses of Lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270:31-45.
94. Subbaiah, C.C., D.S. Bush, and M.M. Sachs. 1998. Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension cultured cells. Plant Physiol. 188:759-771.
95. Talbot, R.J., J.R. Etherington, and J.A.Bryant. 1987. Comparative studies of plant growth and distribution in relation to waterlogging. New Phytol. 105:563-574.
96. Tan, W., J. Liu, T. Dai, Q. Jing, W. Cao, and D. Jiang. 2008. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica 46:21-27.
97. Tang, B., S.Z. Xu, X.L. Zou, Y.L. Zheng, and F.Z. Qui. 2010. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agr. Sci. China 9:651-661.
98. Vartapetian, B.B. and M.B. Jackson. 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79:3-20.
99. Visser, E.J.W., G.M. B&ouml;gemann, C.W.P.M. Bolm, and L.A.C.J. Voesenek. 1996. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. J. Expt. Bot. 47:403-410.
100. Wang, K. and Y. Jiang. 2007. Waterlogging tolerance of Kentucky bluegrass cultivars. HortScience 42:386-390.
101. Wang, K., S. Bian, and Y. Jiang. 2009. Anaerobic metabolism in roots of Kentucky bluegrass in response to short-term waterlogging alone and in combination with high temperatures. Plant Soil 314:221-229.
102. Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14.
103. Yan, B., Q. Dai, X. Liu, S. Huang, and Z. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261-268.
104. Yin, D., S. Chen, F. Chen, Z. Guan, and W. Fang. 2010. Morpho-anatomical and physiological responses of two Dendranthema species to waterlogging. Environ. Expt. Bot. 68:122-130.
105. Yin, D.M., S.M. Chen, F.D. Chen, Z.Y. Guan, and W.M. Fang. 2009. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ. Expt. Bot. 67:87-93.
106. Yin, D.M., Z. Zhang, and H. Luo. 2012. Anatomical responses to waterlogging in Chrysanthemum zawaskii. Scientia Hort. 146:86-91.
107. Yordanova, R.Y., and L.P. Popova. 2001. Photosynthetic response of barley plants to soil flooding. Photosynthetica 39:515-520.
108. Yordanova, R.Y. and L.P. Popova. 2007. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29:535-541.
109. Yordanova, R.Y., K.N. Christov, and L.P. Popova. 2004. Antioxidant enzymes in barly plants subjected to soil flooding. Environ. Expt. Bot. 51:93-101.
110. Yordanova, R.Y., A.N. Uzunova, and L.P. Popova. 2005. Effects of short-term soil flooding on stomata behaviour and leaf gas exchange in barley plants. Biol. Plant. 49:317-319.
111. Yu, B., C.Y. Zhao, J. Li, J.Y. Li, and G. Peng. 2015. Morphological, physiological, and biochemical responses of Populus euphratica to soil flooding. Photosynthetica 53:110-117.
112. Zhang, M.Q., G.J. Li, and R.K. Chen. 2001. Photosynthesis characteristics in eleven cultivars of sugarcane and their responses to water stress during the elongation stage. Proc. Intl. Soc. Sugar Cane Technol. 24:642-643.
113. Zheng, C., D. Jiang, F. Liu, T. Dai, Q. Jing, and W. Cao. 2009. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176:575-582.
114. Zhou, W.J. and X. Lin. 1995. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res. 44:103-110.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51883-
dc.description.abstract熱帶與亞熱帶地區之夏季高溫與豪雨造成土壤低氧,使露天栽培之菊花 [Dendranthema ×grandiflorum (Ramat.) Kitam.] 生長不佳或死亡。本研究探討高溫短暫淹水對菊花生長之影響,及釋氧物質 (Oxygen release compound, ORC) 與氯化鈣預處理對淹水耐受性不同之菊花光合作用、氧化逆境與抗氧化酵素生理反應等之影響。
高溫淹水3天時,部分參試菊花品種幼葉下垂,於莖基部產生不定根,但於回復正常澆、排水後隨即乾枯死亡。高溫淹水3天且回復正常澆、排水14天後,多數夏菊與秋冬菊品種之地上部生長減緩、株高較矮、葉片數較少及根部生長不佳。以根乾重減少比率評估所有參試品種中以‘黃精競’較耐高溫淹水逆境,而‘卡迪娜’為高溫淹水逆境敏感。
菊花‘黃精競’之淨光合作用速率 (Net photosynthesis rate, Pn)、氣孔導度 (Stomatal conductance) 及蒸散作用速率 (Transpiration rate),於30/25 oC淹水第3天下降,但於回復正常澆、排水9天後Pn快速回升。而高溫淹水3天使不耐淹水‘卡迪娜’之Pn下降甚多,於高溫淹水前1天施用1 g•L-1 ORC處理可使‘卡迪娜’之株高、根乾重增加,較能維持固碳反應,因此Pn較淹水處理較高。
於30/25 oC下,淹水3天回復正常澆、排水之試驗期間,‘黃精競’之葉片過氧化氫 (Hygrogen peroxide, H2O2) 和丙二醛 (Malonialdehyde, MDA) 濃度變化不大,顯示氧化傷害不大,且葉片之過氧化氫酶 (Catalase, CAT)、抗壞血酸過氧化酶 (Ascorbate peroxidase, APX) 及榖胱甘肽還原酶 (Glutathion reductase, GR) 活性變化不大。而高溫淹水3天回復正常澆、排水後,不耐淹水‘卡迪娜’之葉片APX、GR活性增加,但葉片H2O2及MDA濃度大幅增加,無法降低氧化逆境之傷害;高溫淹水前施用1 g•L-1 ORC可提升‘卡迪娜’之葉片APX活性,減緩葉片H2O2累積,但葉片MDA濃度仍較高。
於高溫淹水前1及3天,分別澆灌0、60、90、120 mM氯化鈣於介質,對‘黃精競’之生長無顯著影響;而高溫淹水使‘卡迪娜’株高、總葉片數及根乾重,隨氯化鈣預處理濃度由0 mM提高至120 mM增加。於高溫淹水前進行120 mM氯化鈣預處理,可減緩淹水造成之根乾重下,降由80.9%降至42.2%。
高溫淹水前進行120 mM氯化鈣預處理,不影響‘黃精競’地上部生長、光合作用、氣孔導度、蒸散作用速率及細胞間隙二氧化碳濃度 (Intercellular CO2 concentration) 之變化,亦對葉片H2O2、MDA濃度、CAT、APX、GR活性無顯著影響。然而120 mM氯化鈣預處理,減緩淹水處理之‘卡迪娜’葉片MDA產生,於回復正常澆、排水後,維持其葉片CAT、APX、GR活性。
zh_TW
dc.description.abstractHeavy summer rain in subtropical and tropical areas causes soil hypoxia, resulting in poor growth or death of field-grown chrysanthemums [Dendranthema ×grandiflorum (Ramat.) Kitam.]. Growth responses to waterlogging were measured in chrysanthemum cultivars in this study. The effects of oxygen release compound (ORC) and CaCl2 pretreatments on growth, photosynthesis, oxidative stress, and antioxidant enzyme activities responses were studied in waterlogging-tolerant and intolerant cultivars subjected to short-term (3 days) waterlogging and high temperature (25-31 oC) conditions followed by the recovery (9-14 days).
Three-day waterlogging caused wilting of young leaves and the formation of adventitious roots, which died soon after the recovery in many cultivars. Shoot growth, plant height, leaf number, and root growth in most cultivars reduced after 3-d waterlogging followed by 14-d recovery. Among the chrysamthemum cultivars tested,‘Huang Gin-Ging’is the most tolerant while‘Kaa Dei-Na’is the most sensitive to waterlogging, as shown by the reduction in root dry weight.
Photosynthesis was measured in‘Huang Gin-Ging’and‘Kaa Dei-Na’, with control (without waterlogging), waterlogging (3-d waterlogging followed by 9-d recovery) and pretreatments with 1 g·L-1 ORC before waterlogging at 30/25 oC. In‘Huang Gin-Ging’net photosynthesis rate (Pn), stomatal conductance, and transpiration rate all decreased after 3-d waterlogging but recovered at 9-d recovery, regardless of ORC pretreatment. In contrast, 3-d waterlogging caused significicant decrease of Pn in‘Kaa Dei-Na’. Plants pretreated with ORC were taller, had more root dry weight, higher Pn and lower intercellular CO2 concentration (Ci), as compared to the waterlogged plants without ORC.
Plants of‘Huang Gin-Ging’after 3-d waterlogging did not exhibit marked changes in leaf H2O2 and MDA concentrations, and CAT, APX, and GR activities at 30/25 oC. In contrast, waterlogged plants of‘Kaa Dei-Na’showed dramatic increase in leaf H2O2 and MDA concentrations, despite the higher APX and GR activities. Plants pretreated with 1 g·L-1 ORC could reduce leaf H2O2 concentration through early activated APX before waterlogging, while leaf MDA concentration was still high.
Plant growth of 3-d waterlogged‘Hunag Gin-Ging’did not differ among pretreatments with 30 mL of 0, 60, 90, 120 mM CaCl2, while plants of‘Kaa Dei-Na’exhibited increased plant height, leaf number, and root dry weight as CaCl2 concentration increased from 0 to 120 mM. Application of 120 mM CaCl2 pretreatment alleviated waterlogging-injury of‘Kaa Dei-Na’through maintaining higher root dry weight (80.9% vs.42.2%).
Shoot growth, photosynthetic parameters, H2O2, MDA, CAT, APX, GR did not differ in waterlogged‘Huang Gin-Ging’whether pretreated with 120 mM CaCl2 or not. However, plants of‘Kaa Dei-Na’pretreated with 120 mM CaCl2 had lower leaf MDA concentration and remained leaf CAT, APX, and GR activities after 9-d recovery.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:55:12Z (GMT). No. of bitstreams: 1
ntu-104-R02628116-1.pdf: 1713593 bytes, checksum: ca3206ab3bd20cece622fb4ec3b89d25 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 v
表目錄 vii
圖目錄 ix
前言 (Introduction) 1
前人研究 (Literature Review) 3
一、淹水土壤之氣體與化學變化 3
二、土壤淹水之類型 4
三、淹水對植物之生長與生理反應 4
四、釋氧物質 15
五、鈣離子對植物之生理功能與淹水逆境下扮演角色 16
材料方法 (Materials and Methods) 18
試驗一、高溫淹水對不同夏菊品種生長之影響 18
試驗二、高溫淹水對不同秋冬菊品種生長之影響 19
試驗三、不同釋氧物質濃度之溶氧量、pH值及電導度 20
試驗四、施用1g•L-1釋氧物質對菊花於高溫淹水下生長及光合作用之影響 21
試驗五、施用1g•L-1釋氧物質對菊花於高溫淹水下過氧化氫、抗氧化酵素與丙二醛之影響 23
試驗六、不同氯化鈣濃度預處理對菊花於高溫淹水下生長之影響 26
試驗七、氯化鈣預處理對菊花於高溫淹水下生長、光合作用、過氧化氫、抗氧化酵素與丙二醛之影響 27
結果 (Results) 30
試驗一、高溫淹水對不同夏菊品種生長之影響 30
試驗二、高溫淹水對不同秋冬菊品種生長之影響 31
試驗三、不同釋氧物濃度之溶氧量、pH值及電導度 32
試驗四、施用1g•L-1釋氧物質對菊花於高溫淹水狀況下之生長與光合作用之影響 33
試驗五、施用1g•L-1釋氧物質對菊花於高溫淹水下過氧化氫、抗氧化酵素及丙二醛之影響 37
試驗六、不同氯化鈣濃度預處理對菊花於高溫淹水下生長之影響 38
試驗七、氯化鈣預處理對菊花於高溫淹水下生長、光合作用、過氧化氫、抗氧化酵素與丙二醛之影響 39
討論 (Discussion) 78
參考文獻 (References) 91
附錄 (Appendix) 102
dc.language.isozh-TW
dc.title釋氧物質與氯化鈣提升菊花對高溫短暫淹水之耐受性zh_TW
dc.titleOxygen Release Compound and Calcium Chloride Enhance the Tolerance of Chrysanthemums under Short-term Waterlogging and High Temperature Conditionsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡智賢(Jyh-Shyan Tsay),黃光亮(Kuang-Liang Huang),羅筱鳳(Hsiao-Feng Lo)
dc.subject.keyword抗氧化酵素,脂質過氧化,生長,淨光合作用速率,回復期,zh_TW
dc.subject.keywordantioxidant enzymes,rowth,lipid peroxidation,net photosynthesis rate,recovery period,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2015-08-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved