Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51877
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李昆達
dc.contributor.authorShan-Chi Hsiehen
dc.contributor.author謝善棋zh_TW
dc.date.accessioned2021-06-15T13:54:51Z-
dc.date.available2020-07-01
dc.date.copyright2015-09-30
dc.date.issued2015
dc.date.submitted2015-08-31
dc.identifier.citation1. Youngquist, J.T., M.H. Schumacher, J.P. Rose, T.C. Raines, M.C. Politz, M.F. Copeland, and B.F. Pfleger, Production of medium chain length fatty alcohols in Escherichia coli. Metabolic Engineering, 2013. 20: p. 177-186.
2. Huybrechts, D.R.C., L. Debruycker, and P.A. Jacobs, Oxyfunctionalization of Alkanes with Hydrogen-Peroxide on Titanium Silicalite. Nature, 1990. 345(6272): p. 240-242.
3. Fathepure, B.Z., Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Frontiers in Microbiology, 2014. 5.
4. van Beilen, J.B. and E.G. Funhoff, Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology, 2007. 74(1): p. 13-21.
5. Rojo, F., Degradation of alkanes by bacteria. Environmental Microbiology, 2009. 11(10): p. 2477-2490.
6. Eschenfeldt, W.H., Y.Y. Zhang, H. Samaha, L. Stols, L.D. Eirich, C.R. Wilson, and M.I. Donnelly, Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis. Applied and Environmental Microbiology, 2003. 69(10): p. 5992-5999.
7. Lu, W.H., J.E. Ness, W.C. Xie, X.Y. Zhang, J. Minshull, and R.A. Gross, Biosynthesis of Monomers for Plastics from Renewable Oils. Journal of the American Chemical Society, 2010. 132(43): p. 15451-15455.
8. Craft, D.L., K.M. Madduri, M. Eshoo, and C.R. Wilson, Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and Alkanes to alpha,omega-dicarboxylic acids. Applied and Environmental Microbiology, 2003. 69(10): p. 5983-5991.
9. Nie, Y., C.Q. Chi, H. Fang, J.L. Liang, S.L. Lu, G.L. Lai, Y.Q. Tang, and X.L. Wu, Diverse alkane hydroxylase genes in microorganisms and environments. Scientific Reports, 2014. 4.
10. Grant, C., J.M. Woodley, and F. Baganz, Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P-putida GPo1 expressed in E-coil. Enzyme and Microbial Technology, 2011. 48(6-7): p. 480-486.
11. Grant, C., D. Deszcz, Y.C. Wei, R.J. Martinez-Torres, P. Morris, T. Folliard, R. Sreenivasan, J. Ward, P. Dalby, J.M. Woodley, and F. Baganz, Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Scientific Reports, 2014. 4.
12. Grant, C., J.M. Woodley, and F. Baganz, Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P-putida GPo1 expressed in E-coli. Enzyme and Microbial Technology, 2011. 48(6-7): p. 480-486.
13. van Beilen, J.B., E.G. Funhoff, A. van Loon, A. Just, L. Kaysser, M. Bouza, R. Holtackers, M. Rothlisberger, Z. Li, and B. Witholt, Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Applied and Environmental Microbiology, 2006. 72(1): p. 59-65.
14. Scheps, D., S.H. Malca, S.M. Richter, K. Marisch, B.M. Nestl, and B. Hauer, Synthesis of omega-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microbial Biotechnology, 2013. 6(6): p. 694-707.
15. Fujii, T., T. Narikawa, F. Sumisa, A. Arisawa, K. Takeda, and J. Kato, Production of alpha,omega-alkanediols using Escherichia coli expressing a cytochrome p450 from Acinetobacter sp OC4. Bioscience Biotechnology and Biochemistry, 2006. 70(6): p. 1379-1385.
16. Fasan, R., M.M. Chen, N.C. Crook, and F.H. Arnold, Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties. Angewandte Chemie-International Edition, 2007. 46(44): p. 8414-8418.
17. Su, Z., J.H. Horner, and M. Newcomb, Rates of Fatty Acid Oxidations by P450 Compound I are pH Dependent. Chembiochem, 2012. 13(14): p. 2061-2064.
18. Slonczewski, J.L., M. Fujisawa, M. Dopson, and T.A. Krulwich, Cytoplasmic pH Measurement and Homeostasis in Bacteria and Archaea. Advances in Microbial Physiology, Vol 55, 2009. 55: p. 1-79.
19. Heipieper, H.J., G. Neumann, S. Cornelissen, and F. Meinhardt, Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Applied Microbiology and Biotechnology, 2007. 74(5): p. 961-973.
20. Gudiminchi, R.K., C. Randall, D.J. Opperman, O.A. Olaofe, S.T.L. Harrison, J. Albertyn, and M.S. Smit, Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon. Applied Microbiology and Biotechnology, 2012. 96(6): p. 1507-1516.
21. Rodriguez, G.M. and S. Atsumi, Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metabolic Engineering, 2014. 25: p. 227-237.
22. Vallon, T., M. Glemser, S.H. Malca, D. Scheps, J. Schmid, M. Siemann-Herzberg, B. Hauer, and R. Takors, Production of 1-Octanol from n-Octane by Pseudomonas putida KT2440. Chemie Ingenieur Technik, 2013. 85(6): p. 841-848.
23. Panke, S., A. Meyer, C.M. Huber, B. Witholt, and M.G. Wubbolts, An alkane-responsive expression system for the production of fine chemicals. Applied and Environmental Microbiology, 1999. 65(6): p. 2324-2332.
24. Sticher, P., M.C.M. Jaspers, K. Stemmler, H. Harms, A.J.B. Zehnder, and J.R. vanderMeer, Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Applied and Environmental Microbiology, 1997. 63(10): p. 4053-4060.
25. Smits, T.H.M., M.A. Seeger, B. Witholt, and J.B. van Beilen, New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid, 2001. 46(1): p. 16-24.
26. Kurth, E.G., D.M. Doughty, P.J. Bottomley, D.J. Arpi, and L.A. Sayavedra-Sotol, Involvement of BmoR and BmoG in n-alkane metabolism in 'Pseudomonas butanovora'. Microbiology-Sgm, 2008. 154: p. 139-147.
27. Ratajczak, A., W. Geissdorfer, and W. Hillen, Expression of alkane hydroxylase from Acinetobacter sp. strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. Journal of Bacteriology, 1998. 180(22): p. 5822-5827.
28. Nie, Y., H. Fang, Y. Li, C.Q. Chi, Y.Q. Tang, and X.L. Wu, The Genome of the Moderate Halophile Amycolicicoccus subflavus DQS3-9A1(T) Reveals Four Alkane Hydroxylation Systems and Provides Some Clues on the Genetic Basis for Its Adaptation to a Petroleum Environment. Plos One, 2013. 8(8).
29. Schneiker, S., V.A.P.M. dos Santos, D. Bartels, T. Bekel, M. Brecht, J. Buhrmester, T.N. Chernikova, R. Denaro, M. Ferrer, C. Gertler, A. Goesmann, O.V. Golyshina, F. Kaminski, A.N. Khachane, S. Lang, B. Linke, A.C. McHardy, F. Meyer, T. Nechitaylo, A. Puhler, D. Regenhardt, O. Rupp, J.S. Sabirova, W. Selbitschka, M.M. Yakimov, K.N. Timmis, F.J. Vorholter, S. Weidner, O. Kaiser, and P.N. Golyshin, Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology, 2006. 24(8): p. 997-1004.
30. Wang, W.P. and Z.Z. Shao, Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3. Applied Microbiology and Biotechnology, 2012. 94(2): p. 437-448.
31. Qiao, N. and Z. Shao, Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. Journal of Applied Microbiology, 2010. 108(4): p. 1207-1216.
32. Zhang, Y.M. and R.M. Miller, Enhanced Octadecane Dispersion and Biodegradation by a Pseudomonas Rhamnolipid Surfactant (Biosurfactant). Applied and Environmental Microbiology, 1992. 58(10): p. 3276-3282.
33. Yakimov, M.M., P.N. Golyshin, S. Lang, E.R.B. Moore, W.R. Abraham, H. Lunsdorf, and K.N. Timmis, Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. International Journal of Systematic Bacteriology, 1998. 48: p. 339-348.
34. Julsing, M.K., M. Schrewe, S. Cornelissen, I. Hermann, A. Schmid, and B. Buhler, Outer Membrane Protein AlkL Boosts Biocatalytic Oxyfunctionalization of Hydrophobic Substrates in Escherichia coli. Applied and Environmental Microbiology, 2012. 78(16): p. 5724-5733.
35. Nikaido, H., Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 2003. 67(4): p. 593-+.
36. Cornelissen, S., M.K. Julsing, J. Volmer, O. Riechert, A. Schmid, and B. Buhler, Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnology and Bioengineering, 2013. 110(5): p. 1282-1292.
37. Schrewe, M., M.K. Julsing, K. Lange, E. Czarnotta, A. Schmid, and B. Buhler, Reaction and Catalyst Engineering to Exploit Kinetically Controlled Whole-Cell Multistep Biocatalysis for Terminal FAME Oxyfunctionalization. Biotechnology and Bioengineering, 2014. 111(9): p. 1820-1830.
38. Wubbolts, M.G., O. FavreBulle, and B. Witholt, Biosynthesis of synthons in two-liquid-phase media. Biotechnology and Bioengineering, 1996. 52(2): p. 301-308.
39. Harada, K., E. Yamashita, A. Nakagawa, T. Miyafusa, K. Tsumoto, T. Ueno, Y. Toyama, and S. Takeda, Crystal structure of the C-terminal domain of Mu phage central spike and functions of bound calcium ion. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2013. 1834(1): p. 284-291.
40. Ferrieres, L., G. Hemery, T. Nham, A.M. Guerout, D. Mazel, C. Beloin, and J.M. Ghigo, Silent Mischief: Bacteriophage Mu Insertions Contaminate Products of Escherichia coli Random Mutagenesis Performed Using Suicidal Transposon Delivery Plasmids Mobilized by Broad- Host- Range RP4 Conjugative Machinery. Journal of Bacteriology, 2010. 192(24): p. 6418-6427.
41. Omura, T. and R. Sato, The Carbon Monoxide-Binding Pigment of Liver Microsomes. I. Evidence for Its Hemoprotein Nature. J Biol Chem, 1964. 239: p. 2370-8.
42. Moreno, R., S. Hernandez-Arranz, R. La Rosa, L. Yuste, A. Madhushani, V. Shingler, and F. Rojo, The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Environmental Microbiology, 2015. 17(1): p. 105-118.
43. Moreno, R., A. Ruiz-Manzano, L. Yuste, and F. Rojo, The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. Molecular Microbiology, 2007. 64(3): p. 665-675.
44. Zimmermann, T., T. Sorg, S.Y. Siehler, and U. Gerischer, Role of Acinetobacter baylyi Crc in Catabolite Repression of Enzymes for Aromatic Compound Catabolism. Journal of Bacteriology, 2009. 191(8): p. 2834-2842.
45. Williams, K.P., J.J. Gillespie, B.W.S. Sobral, E.K. Nordberg, E.E. Snyder, J.M. Shallom, and A.W. Dickerman, Phylogeny of Gammaproteobacteria. Journal of Bacteriology, 2010. 192(9): p. 2305-2314.
46. Ni, Y. and R.R. Chen, Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnology and Bioengineering, 2004. 87(6): p. 804-811.
47. Wegerer, A., T.Q. Sun, and J. Altenbuchner, Optimization of an E. coli L-rhamnose-inducible expression vector: test of various genetic module combinations. Bmc Biotechnology, 2008. 8.
48. Vaysse, P.J., L. Prat, S. Mangenot, S. Cruveiller, P. Goulas, and R. Grimaud, Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation. Research in Microbiology, 2009. 160(10): p. 829-837.
49. Scheps, D., S.H. Malca, H. Hoffmann, B.M. Nestl, and B. Hauer, Regioselective omega-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp strain JS666. Organic & Biomolecular Chemistry, 2011. 9(19): p. 6727-6733.
50. Hlavica, P., Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnology Advances, 2009. 27(2): p. 103-121.
51. Dubbels, B.L., L.A. Sayavedra-Soto, P.J. Bottomley, and D.J. Arp, Thauera butanivorans sp nov., a C-2-C-9 alkane-oxidizing bacterium previously referred to as 'Pseudomonas butanovora'. International Journal of Systematic and Evolutionary Microbiology, 2009. 59: p. 1576-1578.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51877-
dc.description.abstract以生物催化進行中長碳烷類的末端氧化面臨諸多困難。常用的 AlkB 系統具有過度氧化活性,會將醇類產物進一步變成醛和酸。CYP153A 系統過度氧化活性較輕微,但其烷類調控蛋白仍未被發現,且廣為使用的AlkS烷類誘導表現系統無法被較長碳鏈(> C12)的烷類誘導。因此以 CYP153A 進行中長碳鏈烷類的生物轉化仍需外加誘導物。本研究分析 Marinobacter aquaeolei VT8 之 CYP153A 操縱組上游的 AraC 家族蛋白,發現其為烷類調控蛋白(AlkRM. aq),可受中長碳鏈(C8-C16)烷類以及月桂酸甲酯(methyl-laurate)誘導,且不會受到烷醇產物的抑制。在發現並移除 CYP153A 操縱組內的轉位子後,包含此調控蛋白的 CYP153A 系統可以讓戀臭假單孢菌 (Pseudomonas putida mt-2)以辛烷為唯一碳源生長,並且在大腸桿菌中可以表現 CYP153A 操縱組將辛烷轉化為辛醇。這證實了 AlkRM. aq 為 CYP153AM. aq 系統的一部份,而且CYP153AM. aq 系統在異源宿主仍保有功能。此烷類誘導調控蛋白亦可以用來評估烷類運輸蛋白 AlkL 的功能和最佳表現強度。藉著 AlkL 以及 AlkRM. aq,我們得以利用 E. coli JM109 進行中長碳鏈烷類的全細胞生物轉化。以小型發酵槽進行生物轉化可以產生約 1.5 g/Ltotal 的十二烷醇和十四烷醇。經 GC/MS 分析發現過氧化現象很輕微。本研究證實並分析了過去未被研究過的 AraC/XylS 家族的烷類誘導轉錄調控蛋白,和過去常用的 AlkB 系統相比,此 CYP153A 系統不但可以受較長碳鏈的烷類誘導,也比較不會有產物過度氧化的問題,是烷醇生產上更好的選擇。zh_TW
dc.description.abstractBio-oxidation of medium-long chain alkanes has many obstacles. Intensively studied AlkB system tends to overoxidize alcohol products. CYP153A has less overoxidation activity. But the regulator of CYP153A was not characterized and widely used AlkS expression system cannot be induced by alkanes longer than C12, thus the biotransformation of medium-long chain alkanes with CYP153A has to rely on external inducers. This study demonstrated that the AraC family protein upstream of the CYP153A operon from Marinobacter aquaeolei VT8 is medium-long chain (C8-C16) alkane response regulator (AlkRM. aq). The regulator can also be induced by FAME and is not subject to product inhibition in E. coli. After identifying and removing the transposon inside CYP153AM. aq operon, the regulator can drive the CYP153A expression upon induction. With the regulator, the CYP153AM. aq system enabled P. putida mt-2 to use octane as sole carbon source and can bio-oxidized octane in E. coli JM109 without external inducers. These results proved that the AlkRM. aq is part of CYP153AM. aq system, and the CYP153AM. aq system is functional in heterologous hosts. The regulator was also used as biosensor to evaluate the function and optimal expression level of the alkane facilitator AlkL. With AlkL and AlkRM. aq, it is feasible to whole-cell bio-oxidize medium-long chain alkanes in E. coli JM109. The production of 1-dodecanol and 1-tetradecanol reached about 1.5 g/Ltotal in bioreactor with limited overoxidation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:54:51Z (GMT). No. of bitstreams: 1
ntu-104-R02b22004-1.pdf: 5752830 bytes, checksum: 78c203829e09699083fcfdc8c8bfd080 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsChapter 1 Introduction 12
1.1 ω-oxyfunctionalization of medium-long chain alkanes 12
1.2 Biocatalysis using alkane monooxygenase 12
1.3 Whole-cell biotransformation 13
1.4 Alkane response regulator 15
1.5 Outer membrane facilitator 16
Chapter 2 Materials & Methods 18
2.1 Bacterial strains, medium and growth conditions 18
2.2 DNA manipulation 19
2.3 Characterization of putative AraC/XylS family alkane response regulator 19
2.4 Reconstitution of the CYP153AM. aq operon 20
2.5 Conjugal transfer of plasmids into Pseudomonas putida mt-2 21
2.6 Growth complementation assay 22
2.7 CYP153A expression and detection 22
2.8 Construction of L-rhamnose inducible expression vectors 23
2.9 Construction of alkane transporter expression vector 23
2.10 Construction of self-sufficient CYP153A fusion protein 24
2.11 Small scale biotransformation in 10 ml LB flask 25
2.12 Whole-cell biotransformation of alkanes by E. coli JM109 in small scale bio-reactor 25
2.13 Analysis 26
Chapter 3 Results 27
3.1 Sequence analysis of putative alkane response regulator and promoter 27
3.2 Characterization of the AraC/XylS family alkane response regulator 28
3.3 Reconstitution of native operon 29
3.4 Alkane transporter 30
3.5 Biotransformation by reconstituted operon 31
Chapter 4 Discussion 32
Chapter 5 Conclusion 35
Figures 36
Tables 64
References 69
dc.language.isoen
dc.subject生物轉化zh_TW
dc.subjectCYP153Azh_TW
dc.subject烷類調控蛋白zh_TW
dc.subject十二烷zh_TW
dc.subject烷醇zh_TW
dc.subjectbiotransformationen
dc.subjectCYP153Aen
dc.subjectalkane response regulatoren
dc.subjectdodecaneen
dc.subjectalkanolen
dc.title以 Marinobacter aquaeolei VT8 之細胞色素氧化酶 CYP153A 操縱組進行中長碳鏈烷類之末端氧化zh_TW
dc.titleWhole-cell bio-oxidation of medium-long chain alkanes by Marinobacter aquaeolei VT8 alkane-inducible CYP153A operonen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉啟德,靳宗洛,楊建志,黃鵬林
dc.subject.keywordCYP153A,烷類調控蛋白,十二烷,烷醇,生物轉化,zh_TW
dc.subject.keywordCYP153A,alkane response regulator,dodecane,alkanol,biotransformation,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2015-08-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved