Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51873
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳示國(Shih-Kuo Chen)
dc.contributor.authorHui-Min Wangen
dc.contributor.author王惠民zh_TW
dc.date.accessioned2021-06-15T13:54:37Z-
dc.date.available2015-12-31
dc.date.copyright2015-09-08
dc.date.issued2015
dc.date.submitted2015-08-31
dc.identifier.citationAbrahamson, E. E., & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res, 916(1-2), 172-191.
Badea, T. C., Cahill, H., Ecker, J., Hattar, S., & Nathans, J. (2009). Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron, 61(6), 852-864. doi: 10.1016/j.neuron.2009.01.020
Baver, S. B., Pickard, G. E., Sollars, P. J., & Pickard, G. E. (2008). Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci, 27(7), 1763-1770. doi: 10.1111/j.1460-9568.2008.06149.x
Brzezinski, J. A. t., Prasov, L., & Glaser, T. (2012). Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Dev Biol, 365(2), 395-413. doi: 10.1016/j.ydbio.2012.03.006
Cepko, C. (2014). Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci, 15(9), 615-627. doi: 10.1038/nrn3767
Chehrehasa, F., Meedeniya, A. C., Dwyer, P., Abrahamsen, G., & Mackay-Sim, A. (2009). EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods, 177(1), 122-130. doi: 10.1016/j.jneumeth.2008.10.006
Chen, S. K., Badea, T. C., & Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature, 476(7358), 92-95. doi: 10.1038/nature10206
Czeisler, C. A., & Gooley, J. J. (2007). Sleep and circadian rhythms in humans. Cold Spring Harb Symp Quant Biol, 72, 579-597. doi: 10.1101/sqb.2007.72.064
Do, M. T., Kang, S. H., Xue, T., Zhong, H., Liao, H. W., Bergles, D. E., & 60
Yau, K. W. (2009). Photon capture and signalling by melanopsin retinal ganglion cells. Nature, 457(7227), 281-287. doi: 10.1038/nature07682
Drager, U. C. (1985). Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse. Proc R Soc Lond B Biol Sci, 224(1234), 57-77.
Ecker, J. L., Dumitrescu, O. N., Wong, K. Y., Alam, N. M., Chen, S. K., LeGates, T., . . . Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron, 67(1), 49-60. doi: 10.1016/j.neuron.2010.05.023
Freedman, M. S., Lucas, R. J., Soni, B., von Schantz, M., Munoz, M., David-Gray, Z., & Foster, R. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science, 284(5413), 502-504.
Guler, A. D., Ecker, J. L., Lall, G. S., Haq, S., Altimus, C. M., Liao, H. W., . . . Hattar, S. (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature, 453(7191), 102-105. doi: 10.1038/nature06829
Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. W., & Berson, D. M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol, 497(3), 326-349. doi: 10.1002/cne.20970
Lall, G. S., Revell, V. L., Momiji, H., Al Enezi, J., Altimus, C. M., Guler, A. D., . . . Lucas, R. J. (2010). Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron, 66(3), 417-428. doi: 10.1016/j.neuron.2010.04.037
LeGates, T. A., Fernandez, D. C., & Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci, 15(7), 443-454. doi: 10.1038/nrn3743
McNeill, D. S., Sheely, C. J., Ecker, J. L., Badea, T. C., Morhardt, D., Guido, W., & Hattar, S. (2011). Development of melanopsin-based irradiance detecting circuitry. Neural Dev, 6, 8. doi: 10.1186/1749-8104-6-8
Moore, R. Y. (1983). Organization and function of a central nervous 61
system circadian oscillator: the suprachiasmatic hypothalamic
nucleus. Fed Proc, 42(11), 2783-2789.
Panda, S., Sato, T. K., Castrucci, A. M., Rollag, M. D., DeGrip, W. J.,
Hogenesch, J. B., . . . Kay, S. A. (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science, 298(5601), 2213-2216. doi: 10.1126/science.1076848
Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol, 25, 159-184.
Provencio, I., Jiang, G., De Grip, W. J., Hayes, W. P., & Rollag, M. D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A, 95(1), 340-345.
Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F., & Rollag, M. D. (2000). A novel human opsin in the inner retina. J Neurosci, 20(2), 600-605.
Provencio, I., Rollag, M. D., & Castrucci, A. M. (2002). Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature, 415(6871), 493. doi: 10.1038/415493a
Qiu, F., Jiang, H., & Xiang, M. (2008). A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J Neurosci, 28(13), 3392-3403. doi: 10.1523/JNEUROSCI.0043-08.2008
Schmidt, T. M., Alam, N. M., Chen, S., Kofuji, P., Li, W., Prusky, G. T., & Hattar, S. (2014). A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron, 82(4), 781-788. doi: 10.1016/j.neuron.2014.03.022
Schmidt, T. M., Chen, S. K., & Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci, 34(11), 572-580. doi: 10.1016/j.tins.2011.07.001
Schmidt, T. M., Do, M. T., Dacey, D., Lucas, R., Hattar, S., & Matynia, A. (2011). Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci, 31(45), 16094-16101. doi: 10.1523/JNEUROSCI.4132-11.2011
62
Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382(6594), 810-813. doi: 10.1038/382810a0
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51873-
dc.description.abstract自從視黑質被發現後,自主感光視神神經細胞(ipRGCs)被發現參參與了了 許多非成像視覺功能,例例如生理理週期及瞳孔光反射。在視神神經細胞的 發育中,brn3b (POU4F2) 是個常見見的轉錄錄因子。儘管大部份的 ipRGCs 表現 brn3b,卻有少部分的 ipRGCs 不不表現 brn3b,這些 ipRGCs 主 要支配了了下視丘中的視交叉上核(SCN),而 SCN 的功能為哺乳類類動 物的生理理時鐘中樞。在視網膜發育的過程中,不不同時間點分化出來來的 細胞往往形成不不同的細胞種類類。為了了找出這些 brn3b 陰性 ipRGCs 的 分化時程,我們利利用缺乏 brn3b 陽性 ipRGCs 的基因轉殖小鼠,以及 野生型小鼠,以 5-乙炔基-2’-去氧尿尿苷(EdU)和視黑質免疫染色來來標 定在特定時間點進行行細胞分裂裂的 ipRGCs。我們的資料料顯示 brn3b 陰 性 ipRGCs 與全體的 ipRGCs,從前驅細胞分化出來來的時間範圍並無 顯著差異異。更更進一步分析這些細胞的分佈範圍,發現 brn3b 陰性 ipRGCs 與全體 ipRGCs 在發育的空間進程上有些微的差異異。另一方 面,針對 brn3b 陰性 ipRGCs 與視交叉上核所主導的生理理時鐘,藉由 雙眼及單眼的生理理時鐘相位移實驗的結果,提供日後相關研究的參參 考。zh_TW
dc.description.abstractSince the melanopsin was discovered, the novel photoreceptor, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), have been shown to participate in many non-image forming functions such as circadian rhythms and pupillary light reflex. While most ipRGCs express brn3b (POU4F2), the general transcription factor for retinal ganglion cells development, a portion of ipRGCs do not express brn3b and dominantly innervate suprachiasmatic nucleus (SCN), which is the central clock for circadian rhythm in mammals. In retinal development, different time points of cell differentiation strongly imply different cell types. To identify differentiation time point of brn3b negative ipRGCs, we used 5-ethynyl-2’-deoxyuridine (EdU) and melanopsin immunostaining to label mitotic ipRGCs at specific embryonic stage in wild type mice and transgenic mice without brn3b-expressing ipRGCs. Our data show that brn3b negative ipRGCs and the whole population of ipRGCs derive from retinal progenitor cells in the same period. Further analysis in spatial
iii
distribution discovered slight difference at progression of development. In addition, to assess the circadian rhythms that brn3b negative M1 ipRGCs and SCN involve, circadian phase shift experiments of one-eye light pulse and two-eye light pulse were done, and the results provide some insights for researches in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:54:37Z (GMT). No. of bitstreams: 1
ntu-104-R01b41021-1.pdf: 7537061 bytes, checksum: 0928b0fb9cc8fdf7bed4ae60995556e7 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝誌 ...................................................................................................................................... I
摘要 ..................................................................................................................................... II
ABSTRACT........................................................................................................................ III
CONTENTS ........................................................................................................................ V
CHAPTER I INTRODUCTION ......................................................................................... 1 CIRCADIAN RHYTHM................................................................................................................ 1 RETINA STRUCTURE AND DEVELOPMENT ................................................................................ 4 INTRINSICALLY PHOTOSENSITIVE RETINAL GANGLION CELLS- IPRGCS ................................ 8 SUPRACHIASMATIC NUCLEUS AND CIRCADIAN RHYTHMS.................................................... 11
STATEMENT OF PURPOSE ............................................................................................13 CHAPTER II MATERIALS AND METHODS .................................................................15
ANIMALS ................................................................................................................................ 15 EDU INJECTION ...................................................................................................................... 17 RETINA DISSECTION AND STAINING ...................................................................................... 18
v
Z/EG MOUSE LINE AND FLUORESCENT IPRGCS ..................................................................... 21 RETINA SPECIMEN IMAGING AND CELL CALCULATION .......................................................... 22 BEHAVIORAL EXPERIMENT .................................................................................................... 23
CHAPTER III RESULTS ..................................................................................................25 NUMBERS OF STAINED CELLS ................................................................................................. 25 BIRTHDATES OF BRN3B NEGATIVE M1 IPRGCS ..................................................................... 26 SPATIAL DISTRIBUTION OF BRN3B NEGATIVE M1 IPRGCS AND ALL IPRGCS ....................... 29 SPATIAL DISTRIBUTION OF BRN3B NEGATIVE M1 IPRGCS AND ALL IPRGCS LABELLED BY EDU INJECTED ON EACH DAY ................................................................................................. 30 PHASE SHIFTS OF 125 LUX OR 250 LUX LIGHT PULSES ON ONE EYE OR TWO EYES ................. 32 NUMBERS OF IPRGCS IN NEONATAL MOUSE RETINAE ......................................................... 33
CHAPTER IV DISCUSSION.............................................................................................34 REFERENCES ...................................................................................................................60
dc.language.isoen
dc.subject視網 膜發育zh_TW
dc.subjectBrn3b 陰性 M1 型自主感光視神神經細胞zh_TW
dc.subject視交叉上核zh_TW
dc.subject生理理時鐘zh_TW
dc.subjectbrn3b negative M1 intrinsically photosensitive retinal ganglion cellsen
dc.subjectcircadian rhythmen
dc.subjectcell birthdateen
dc.subjectretinal developmenten
dc.subjectsuprachiasmatic nucleusen
dc.title探討新型自主感光視神神經細胞之發育及其功能zh_TW
dc.titleDetermine the Developmental Lineage and Functions of Novel Retinal Photoreceptorsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王致恬,林頌然,周申如
dc.subject.keywordBrn3b 陰性 M1 型自主感光視神神經細胞,視交叉上核,視網 膜發育,生理理時鐘,zh_TW
dc.subject.keywordbrn3b negative M1 intrinsically photosensitive retinal ganglion cells,suprachiasmatic nucleus,retinal development,cell birthdate,circadian rhythm,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2015-08-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
7.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved