請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51873完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳示國(Shih-Kuo Chen) | |
| dc.contributor.author | Hui-Min Wang | en |
| dc.contributor.author | 王惠民 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:54:37Z | - |
| dc.date.available | 2015-12-31 | |
| dc.date.copyright | 2015-09-08 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-31 | |
| dc.identifier.citation | Abrahamson, E. E., & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res, 916(1-2), 172-191.
Badea, T. C., Cahill, H., Ecker, J., Hattar, S., & Nathans, J. (2009). Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron, 61(6), 852-864. doi: 10.1016/j.neuron.2009.01.020 Baver, S. B., Pickard, G. E., Sollars, P. J., & Pickard, G. E. (2008). Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci, 27(7), 1763-1770. doi: 10.1111/j.1460-9568.2008.06149.x Brzezinski, J. A. t., Prasov, L., & Glaser, T. (2012). Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Dev Biol, 365(2), 395-413. doi: 10.1016/j.ydbio.2012.03.006 Cepko, C. (2014). Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci, 15(9), 615-627. doi: 10.1038/nrn3767 Chehrehasa, F., Meedeniya, A. C., Dwyer, P., Abrahamsen, G., & Mackay-Sim, A. (2009). EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods, 177(1), 122-130. doi: 10.1016/j.jneumeth.2008.10.006 Chen, S. K., Badea, T. C., & Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature, 476(7358), 92-95. doi: 10.1038/nature10206 Czeisler, C. A., & Gooley, J. J. (2007). Sleep and circadian rhythms in humans. Cold Spring Harb Symp Quant Biol, 72, 579-597. doi: 10.1101/sqb.2007.72.064 Do, M. T., Kang, S. H., Xue, T., Zhong, H., Liao, H. W., Bergles, D. E., & 60 Yau, K. W. (2009). Photon capture and signalling by melanopsin retinal ganglion cells. Nature, 457(7227), 281-287. doi: 10.1038/nature07682 Drager, U. C. (1985). Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse. Proc R Soc Lond B Biol Sci, 224(1234), 57-77. Ecker, J. L., Dumitrescu, O. N., Wong, K. Y., Alam, N. M., Chen, S. K., LeGates, T., . . . Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron, 67(1), 49-60. doi: 10.1016/j.neuron.2010.05.023 Freedman, M. S., Lucas, R. J., Soni, B., von Schantz, M., Munoz, M., David-Gray, Z., & Foster, R. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science, 284(5413), 502-504. Guler, A. D., Ecker, J. L., Lall, G. S., Haq, S., Altimus, C. M., Liao, H. W., . . . Hattar, S. (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature, 453(7191), 102-105. doi: 10.1038/nature06829 Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. W., & Berson, D. M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol, 497(3), 326-349. doi: 10.1002/cne.20970 Lall, G. S., Revell, V. L., Momiji, H., Al Enezi, J., Altimus, C. M., Guler, A. D., . . . Lucas, R. J. (2010). Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron, 66(3), 417-428. doi: 10.1016/j.neuron.2010.04.037 LeGates, T. A., Fernandez, D. C., & Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci, 15(7), 443-454. doi: 10.1038/nrn3743 McNeill, D. S., Sheely, C. J., Ecker, J. L., Badea, T. C., Morhardt, D., Guido, W., & Hattar, S. (2011). Development of melanopsin-based irradiance detecting circuitry. Neural Dev, 6, 8. doi: 10.1186/1749-8104-6-8 Moore, R. Y. (1983). Organization and function of a central nervous 61 system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc, 42(11), 2783-2789. Panda, S., Sato, T. K., Castrucci, A. M., Rollag, M. D., DeGrip, W. J., Hogenesch, J. B., . . . Kay, S. A. (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science, 298(5601), 2213-2216. doi: 10.1126/science.1076848 Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol, 25, 159-184. Provencio, I., Jiang, G., De Grip, W. J., Hayes, W. P., & Rollag, M. D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A, 95(1), 340-345. Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F., & Rollag, M. D. (2000). A novel human opsin in the inner retina. J Neurosci, 20(2), 600-605. Provencio, I., Rollag, M. D., & Castrucci, A. M. (2002). Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature, 415(6871), 493. doi: 10.1038/415493a Qiu, F., Jiang, H., & Xiang, M. (2008). A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J Neurosci, 28(13), 3392-3403. doi: 10.1523/JNEUROSCI.0043-08.2008 Schmidt, T. M., Alam, N. M., Chen, S., Kofuji, P., Li, W., Prusky, G. T., & Hattar, S. (2014). A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron, 82(4), 781-788. doi: 10.1016/j.neuron.2014.03.022 Schmidt, T. M., Chen, S. K., & Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci, 34(11), 572-580. doi: 10.1016/j.tins.2011.07.001 Schmidt, T. M., Do, M. T., Dacey, D., Lucas, R., Hattar, S., & Matynia, A. (2011). Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci, 31(45), 16094-16101. doi: 10.1523/JNEUROSCI.4132-11.2011 62 Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382(6594), 810-813. doi: 10.1038/382810a0 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51873 | - |
| dc.description.abstract | 自從視黑質被發現後,自主感光視神神經細胞(ipRGCs)被發現參參與了了 許多非成像視覺功能,例例如生理理週期及瞳孔光反射。在視神神經細胞的 發育中,brn3b (POU4F2) 是個常見見的轉錄錄因子。儘管大部份的 ipRGCs 表現 brn3b,卻有少部分的 ipRGCs 不不表現 brn3b,這些 ipRGCs 主 要支配了了下視丘中的視交叉上核(SCN),而 SCN 的功能為哺乳類類動 物的生理理時鐘中樞。在視網膜發育的過程中,不不同時間點分化出來來的 細胞往往形成不不同的細胞種類類。為了了找出這些 brn3b 陰性 ipRGCs 的 分化時程,我們利利用缺乏 brn3b 陽性 ipRGCs 的基因轉殖小鼠,以及 野生型小鼠,以 5-乙炔基-2’-去氧尿尿苷(EdU)和視黑質免疫染色來來標 定在特定時間點進行行細胞分裂裂的 ipRGCs。我們的資料料顯示 brn3b 陰 性 ipRGCs 與全體的 ipRGCs,從前驅細胞分化出來來的時間範圍並無 顯著差異異。更更進一步分析這些細胞的分佈範圍,發現 brn3b 陰性 ipRGCs 與全體 ipRGCs 在發育的空間進程上有些微的差異異。另一方 面,針對 brn3b 陰性 ipRGCs 與視交叉上核所主導的生理理時鐘,藉由 雙眼及單眼的生理理時鐘相位移實驗的結果,提供日後相關研究的參參 考。 | zh_TW |
| dc.description.abstract | Since the melanopsin was discovered, the novel photoreceptor, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), have been shown to participate in many non-image forming functions such as circadian rhythms and pupillary light reflex. While most ipRGCs express brn3b (POU4F2), the general transcription factor for retinal ganglion cells development, a portion of ipRGCs do not express brn3b and dominantly innervate suprachiasmatic nucleus (SCN), which is the central clock for circadian rhythm in mammals. In retinal development, different time points of cell differentiation strongly imply different cell types. To identify differentiation time point of brn3b negative ipRGCs, we used 5-ethynyl-2’-deoxyuridine (EdU) and melanopsin immunostaining to label mitotic ipRGCs at specific embryonic stage in wild type mice and transgenic mice without brn3b-expressing ipRGCs. Our data show that brn3b negative ipRGCs and the whole population of ipRGCs derive from retinal progenitor cells in the same period. Further analysis in spatial
iii distribution discovered slight difference at progression of development. In addition, to assess the circadian rhythms that brn3b negative M1 ipRGCs and SCN involve, circadian phase shift experiments of one-eye light pulse and two-eye light pulse were done, and the results provide some insights for researches in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:54:37Z (GMT). No. of bitstreams: 1 ntu-104-R01b41021-1.pdf: 7537061 bytes, checksum: 0928b0fb9cc8fdf7bed4ae60995556e7 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 謝誌 ...................................................................................................................................... I
摘要 ..................................................................................................................................... II ABSTRACT........................................................................................................................ III CONTENTS ........................................................................................................................ V CHAPTER I INTRODUCTION ......................................................................................... 1 CIRCADIAN RHYTHM................................................................................................................ 1 RETINA STRUCTURE AND DEVELOPMENT ................................................................................ 4 INTRINSICALLY PHOTOSENSITIVE RETINAL GANGLION CELLS- IPRGCS ................................ 8 SUPRACHIASMATIC NUCLEUS AND CIRCADIAN RHYTHMS.................................................... 11 STATEMENT OF PURPOSE ............................................................................................13 CHAPTER II MATERIALS AND METHODS .................................................................15 ANIMALS ................................................................................................................................ 15 EDU INJECTION ...................................................................................................................... 17 RETINA DISSECTION AND STAINING ...................................................................................... 18 v Z/EG MOUSE LINE AND FLUORESCENT IPRGCS ..................................................................... 21 RETINA SPECIMEN IMAGING AND CELL CALCULATION .......................................................... 22 BEHAVIORAL EXPERIMENT .................................................................................................... 23 CHAPTER III RESULTS ..................................................................................................25 NUMBERS OF STAINED CELLS ................................................................................................. 25 BIRTHDATES OF BRN3B NEGATIVE M1 IPRGCS ..................................................................... 26 SPATIAL DISTRIBUTION OF BRN3B NEGATIVE M1 IPRGCS AND ALL IPRGCS ....................... 29 SPATIAL DISTRIBUTION OF BRN3B NEGATIVE M1 IPRGCS AND ALL IPRGCS LABELLED BY EDU INJECTED ON EACH DAY ................................................................................................. 30 PHASE SHIFTS OF 125 LUX OR 250 LUX LIGHT PULSES ON ONE EYE OR TWO EYES ................. 32 NUMBERS OF IPRGCS IN NEONATAL MOUSE RETINAE ......................................................... 33 CHAPTER IV DISCUSSION.............................................................................................34 REFERENCES ...................................................................................................................60 | |
| dc.language.iso | en | |
| dc.subject | 視網 膜發育 | zh_TW |
| dc.subject | Brn3b 陰性 M1 型自主感光視神神經細胞 | zh_TW |
| dc.subject | 視交叉上核 | zh_TW |
| dc.subject | 生理理時鐘 | zh_TW |
| dc.subject | brn3b negative M1 intrinsically photosensitive retinal ganglion cells | en |
| dc.subject | circadian rhythm | en |
| dc.subject | cell birthdate | en |
| dc.subject | retinal development | en |
| dc.subject | suprachiasmatic nucleus | en |
| dc.title | 探討新型自主感光視神神經細胞之發育及其功能 | zh_TW |
| dc.title | Determine the Developmental Lineage and Functions of Novel Retinal Photoreceptors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王致恬,林頌然,周申如 | |
| dc.subject.keyword | Brn3b 陰性 M1 型自主感光視神神經細胞,視交叉上核,視網 膜發育,生理理時鐘, | zh_TW |
| dc.subject.keyword | brn3b negative M1 intrinsically photosensitive retinal ganglion cells,suprachiasmatic nucleus,retinal development,cell birthdate,circadian rhythm, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 7.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
