Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51846
標題: 3D 乳房彈性超音波之電腦腫瘤診斷
Computer-aided Tumor Diagnosis for 3-D Breast Elastography
作者: Yu-Hsuan Chu
朱于萱
指導教授: 張瑞峰
關鍵字: 乳癌,三維彈性超音波,電腦輔助診斷,
breast cancer,3-D elastography,computer-aided diagnosis,
出版年 : 2015
學位: 碩士
摘要: 乳癌為女性癌症中的主要的死因。然而,如果乳癌能早期被偵測到且給予適當的治療,則可降低乳癌的致死率。近年來許多研究顯示利用乳房彈性超音波做診斷,可獲得優於傳統 B-mode 超音波的診斷效果。彈性可表現出腫瘤的軟硬度,而腫瘤軟硬度的差異可用於診斷腫瘤。近來,三維彈性超音波不僅可取得傳統三維 B-mode 影像更可取得不同截切面的彈性影像。因此,此篇研究主要的目的是利用三維乳房彈性超音波進行電腦輔助診斷腫瘤。首先,由 B-mode 影像切割出的腫瘤區域擷取出紋理特徵、形狀特徵、以及建立最接近腫瘤的橢圓模型,取得腫瘤與此模型的異同點特徵,再從彈性影像中對應的腫瘤區域擷取彈性特徵。最後,再利用這些擷取出的特徵來診斷腫瘤的良惡性。在此實驗中採用了 159 個病理驗證過的腫瘤,包含 110 個良性病例以及 49 個惡性病例。經由實驗結果,結合紋理特徵、形狀特徵和彈性特徵會得到最佳的結果,可達到準確率 81% (129/159),靈敏性 78% (38/49),特異性 83% (91/110),以及 ROC 曲線面積 0.8512。因此,使用三維乳房彈性超音波可以有效的診斷腫瘤良惡性。
Breast cancer is the leading cause of cancer death for women. The mortality rate of breast cancer can be greatly reduced if a proper treatment is adopted after an early detection. Recently, many studies have shown that adding elastography examination can improve the diagnostic performance comparing to using only conventional ultrasound. Elastography can estimate the tissue stiffness by calculating the tissue displacement under a certain force. The stiffness of benign and malignant tumors can be used to be features for classifying tumors. Therefore, this study proposed a computer-aided detection (CAD) system using 3-D B-mode ultrasound and elastographic breast images. The CAD system proposed in this study using morphology, texture, and elastography features extracted from the segmented B-mode tumor area. Combining these feature sets in a binary regression model generated the malignancy estimation model.The diagnostic performance was validated by using 110 benign and 49 malignant breast lesions. The performance of combinating gray-level co-occurrence matrix (GLCM), ranklet textures,
shape and elastography features achieved an accuracy of 81% (129/159), a sensitivity of 76% (38/49), a specificity of 83% (80/110), and an Az value of 0.8512. Summarily, the combination of B-mode and elastography features is effective to the classification of breast tumor.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51846
全文授權: 有償授權
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.61 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved