請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭安妮(On-Lei Annie Kwok) | |
| dc.contributor.author | Jia-Ren Liu | en |
| dc.contributor.author | 劉家任 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:52:49Z | - |
| dc.date.available | 2020-08-20 | |
| dc.date.copyright | 2020-08-20 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | 1. ASTM D422–63. (2007). Standard test methods for particle-size analysis of soils. ASTM International, West Conshohocken, PA. 2. ASTM D5311–11. (2011). Standard test methods for load controlled cyclic triaxial strength of soil. ASTM International, West Conshohocken, PA. 3. ASTM D6836–16. (2019). Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM International, West Conshohocken, PA. 4. ASTM D854–10. (2010). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA. 5. Banerjee, A. (2017). Response of unsaturated soils under monotonic and dynamic loading over moderate suction states. Ph.D. Thesis, The university of Texas, Arlington. 6. Been, K., and Jefferies, M.G. (1985). A state parameter for sands. Géotechnique, 35(2): 99-112. 7. Bishop, A. W. (1959). The principle of effective stress. Tek. Ukebl. 106:859–863. 8. Bishop, A. W., Alpan, I., Blight, G. E., and Donald, I. B. (1960). Factors controlling the shear strength of partly saturated cohesive soils, paper presented at the Research Conference on Shear Strength of Cohesive Soils, ASCE, University of Colorado, Boulder, CO, 503–532. 9. Bishop, A.W. and Blight, G.E. (1963). Some aspects of effective stress in saturated and unsaturated soils. Geotechnique, 13(3), 177-197. 10. Castro, G. (1975). Liquefaction and cyclic mobility of saturated sands. Journal of Geotechnical Engineering Division, ASCE, 101(GT6), 551-570. 11. Castro, G. and Poulos, S. J. (1977). Factors affecting liquefaction and cyclic mobility. Journal of Geotechnical Engineering Division, ASCE, 103(GT6), 501-516. 12. Chen, Y.J., and Yu, P.J. (1995). Pore pressure dissipation features of an unsaturated compacted soil. Proceedings of the 1st International Conference on unsaturated soils, Vol. 2, 439-445. 13. Chen, Y. W. (2017). Use of Flow Pump Method for Soil-Water Characteristic Curve Measurement. Master’s thesis, National Taiwan University, Taiwan. 14. Ferrari, A. and Laloui, L. (2017). Advances in Laboratory Testing and Modelling of Soils and Shales. Springer Series in Geomechanics and Geoengineering, Palermo, Italy. 15. Finn, W. D. L., Pickering, D. J., and Bransby, P. L. (1971). Sand liquefaction in triaxial and simple shear tests. Journal of Soil Mechanics and Foundations Division, 97(4), 639–659. 16. Fredlund, D. G. (2015). State variables in saturated-unsaturated soil mechanics. Soils and Rocks, 39 (1), 3–17. 17. Fredlund, D. G. and Morgenstern, N. R. (1977). Stress state variables for unsaturated soils. J. Geotech. Engng Div., Am. Sot. Civ. Engrs 103, GT5, 447-466. 18. Fredlund, D. G., and Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley, New York. 19. Fredlund, D. G., and Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, Vol. 31, No. 3, 521–532. 20. Fredlund, D. G., Morgenstem, N. R., and Widger, R. A. (1978). The Shear Strength of Unsaturated Soils, Can. Geotech. J., vol. 15, no. 3, 313-321. 21. Fredlund, D. G., Rahardjo, H., and Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley and Sons, Inc., Hoboken, New Jersey. 22. Fredlund, M. D., Fredlund, D. G., and Wilson, G. W. (1997). Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties. Proceedings of the Third Brazilian Symposium on Unsaturated Soils, NSAT ‘97, Rio de Janeiro, Brazil, Vol. 1, 13–23. 23. Goto, S., Shamoto, Y., 2002. Estimation method for the liquefaction strengthof unsaturated sandy soil (part 2). In: Proc. 37th Jpn. Nat. Conf. Geotech.Engrg., pp. 1987-1988. 24. Hilf, J. W. (1956). An investigation of pore-water pressure in compacted cohesive soils. Ph.D. dissertation, Technical Memo (654), U.S. Department of Interior, Bureau of Reclaation, Design and Construction Devision, Denver, Colorado. 25. Huang, A. B., Chang, W. J., Hsu, H. H. and Huang, Y. J. (2015). A mist pluviation method for reconstituting silty sand specimens. Engineering Geology, 188, 1-9. 26. Hwang, C. (2002). Determination of material functions for unsaturated flow. Ph.D. dissertation, University of Colorado, Boulder, Co, USA. 27. Huang, Y., Tsuchiya, H. and Ishihara, K. (1999). Estimation of partial saturation effect on liquefaction resistance of sand using P-wave velocity, Proc. JGS Symposium, (113), 431–434. 28. Ishibashi, I., Sherif, M. A. and Cheng, W. L. (1982). The effects of soil parameters on pore-pressure-rise and liquefaction prediction. Soils and Foundations, Vol. 22, No. 1, 39-48. 29. Ishihara, K. (1985). Stability of Natural Deposits During Earthquakes. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1:321-376 30. Ishihara, K. (1996). Soil behaviour in earthquake geotechnics. 1st edn. Clarendon Press, Oxford 350 p. 31. Ishihara, K., Tsuchiya, H., Huang, Y. and Kamada, K. (2001): Recent studies on liquefaction resistance of sand – effect of saturation, Proc. 4th Int. Conf. Recent Advance in Geotech. Earthquake Engrg. and Soil Dynamics, 1–7. 32. Ishihara, K. and Tsukamoto, Y. (2004). Cyclic strength of imperfectly saturated sands and analysis of liquefaction, Proc. Japan Academy Ser. B, 80(8), 372– 391. 33. JSSMFE (1979). Soil Testing Manual, 2nd Revised Edition, Japan, pp. 172-188. 34. Krahn, J., and Fredlund, D.G. (1972). On total matric and osmotic suction. Journal of Soil Science, 114(5), 339-348. 35. Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, N. J. 36. Kimoto, S., Oka, F., Fukutani, J., Yabuki, T., and Nakashima, K. (2011). Monotonic and cyclic behavior of unsaturated sandy soil under drained and fully undrained conditions. Soils Found., 51(4), 663–681. 37. Kohgo, Y., Nakano, M., and Miyazaki, T. (1993). (a) Theoretical aspects of constitutive modelling for unsaturated soils; (b) Verification of the generalized elastoplastic model for unsaturated soils. Soils and Foundations, Vol. 33, No. 4, 49–73. 38. Lenart, S. (2008). The response of saturated soils to a dynamic load, Acta Geotechnica Slovenica, 5(1), 37-49. 39. Li, P. T. (2018). Measurement of Drying and Wetting SWCCs by Flow Pump Method. Master’s thesis, National Taiwan University, Taiwan. 40. Li, Y. R. (2019). Investigation of post cyclic behavior of sands under the framework of binary packing. Master’s thesis, National Taiwan University, Taiwan. 41. Lien, C. Y. (2018). Dynamic properties of Penghu calcareous sand by resonant column and cyclic triaxial tests. Master’s thesis, National Taiwan University, Taiwan. 42. Lu, N., and Likos, W. J. (2004). Unsaturated Soil Mechanics. John Wiley and Sons, Inc., New York. 43. Mele, L., Tan Tian J., Lirer, S., Flora, A., Koseki, J. (2019). Liquefaction resistance of unsaturated sands: experimental evidence and theoretical interpretation. Gèotechnique 69, No. 6, 541-553. 44. Mogami, T. and Kubo, K. (1953). The behaviour of soil during vibration. proc., 3rd International Conference on Soil Mechanics and Foundation. Vol. 1, 152-155. 45. Mulilis J. P. (1975). The effects of method of sample preparation on the stress-strain behavior. Report no. EERC 75-18, University of California, Berkeley. 46. Nishimura,T., Koseki, J., Fredlund, D.G., Rahardjo, H. (2012). Micro-porous membrane technology for measurement of soil-water characteristic curve. Geotech. Test. J35, 201–208. 47. Okamura, M., and Soga, Y. (2006). Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5), 93-104. 48. Okamura, M., and Noguchi, K. (2009). Liquefaction resistances of unsaturated nonplastic silt. Soils and Foundations, 49(2), 221-229. 49. Satija, B. S. (1978). Shear behaviour of partly saturated soils, Ph.D. Thesis, Indian Institute of Technology, New Delhi. 50. Satija, B. S., and Gulhati, S. K. (1979). Strain rate for shearing testing of unsaturated soil. Proceedings of the Sixth Asian Regional Conference on Soil Mechanics and Foundation Engineering, Singapore, 83–86. 51. Seed, H. B., and Idriss, I. M. (1971). Simplified procedures for evaluation soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. 9, 1249-1273. 52. Seed, H. B., and Peacock, W. H. (1971). Test procedure for soil liquefaction characteristics. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. 8, 1099-1119. 53. Seed, H. B., Martin, P. P. and Lysrner, J. (1975). The generation and dissipation of pore water pressures during soil liquefaction. Earthquake Engineering Research Center, Report No. EERC 75-26, August 1975. 54. Seed, H. B., and Idriss, I. M. (1982). Ground motion and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Oakland, California. 55. Terzaghi, K. (1923). Die berechnung der durchlassigkeitzifer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, Mathematish-naturwissenschaftliche, Klasse. Akademie der Wissenschaften, Vienna, 125-138. 56. Toll, D. G. and Ong, B. H. (2003). Critical state parameters for an unsaturated residual sandy clay. Geotechnique 53, No. 1, 93–103. 57. Townsend, F. C. and Mulilis, J. P. (1978). Liquefaction potential of sands under static and cyclic loadings. U.S. Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, Miss. Report. 58. Tsukamoto, Y., Kawabe, S., Matsumoto, J., and Hagiwara, S. (2014). Cyclic resistance of two unsaturated silty sands against soil liquefaction. Soils and Foundations, 54(6), 1094–1103. 59. Unno, T., Kazama, M., Uzuoka, R., and Sento, N. (2008). Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton. Soils and Foundations, 48(1), 87–99. 60. van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Journal of Soil Science Society of America, Vol. 44, 892–898. 61. Wang, Q., Pufahl, D. E., and Fredlund, D. G. (2002). A study of critical state on an unsaturated silty soil. Canadian Geotechnical Journal, 39(1): 213–218. 62. Wang, W. (1979). Some finding in soil research liquefaction. Earthquake Engineering Department of Water Conservancy and Hydroelectric Power Scientific Research Institute, Bejjing, China. 63. Wong, R. T., Seed, H. B., and Chan, D. K. (1975). Cyclic loading liquefaction of gravelly soils. Journal of Geotechnical Engineering, 101(6): 571–583. 64. Yasuda, S., Kobayashi, T., Hukushima, Y., Kohari, M. and Simazaki, T. (1999). Effect of degree of saturation on the liquefaction strength of Masa, Proc. 34th Japanese National Conf. Geotech. Engrg., 2071–2072. 65. Yang, S.R., Huang, W.H., and Tai, Y.T. (2005). Variation of resilient modulus with soil suction for compacted subgrade soils. Transportation Research Record: Journal of the Transportation Research Board, Vol. 1913, No. 1, 99-106. 66. Yang, S.R., Lin, H. D., Kung, H. S., and Huang, W. H. (2008). Suction-controlled laboratory test on resilient modulus of unsaturated compacted subgrade soils. Journal of Geotechnical and Geoenvironmental Engineering, 134(9): 1375–1384. 67. Yoshimi, Y., Tanaka, K., and Tokimatsu, K. (1989). Liquefaction resistance of a partially saturated sand. Soils and Foundations, 29(3), 157–162. 68. Zhang, B., Muraleetharan, K. K., and Liu, C. (2016). Liquefaction of unsaturated sands. International Journal of Geomechanics, 16(3). 69. Znidarcic, D., Illangasekare, T. and Manna, M. (1991). Laboratory testing and parameter estimation for two-phase flow problems. Proceedings of the Geotechnical Engineering Congress, Boulder, Colorado, McLean, Campbell and Harris, Eds., ASCE, New York, 1078-1089. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51842 | - |
| dc.description.abstract | 不飽和土壤的課題存在於許多大地工程相關案例中,尤其是當案例場址發生在地下水位面附近時,不飽和土壤的問題應該被納入工程設計參考中。前人透過進行許多不飽和土壤試驗後發現,土壤在不飽和條件下有提升剪力強度及抗液化能力的效果,而隨著土壤飽和度下降,土壤強度逐漸提升。本研究以實驗方法進行土壤試體在不飽和狀態下受靜態及反覆循環載重後呈現的土壤行為。為了在實驗室中進行試驗,本研究發展了以三軸方法進行不飽和土壤試驗的實驗流程,而實驗流程可分為五個項目,其中包括了以濕霣降法進行土壤試體重模,及使用定流量泵以飽和度控制方法降低土壤試體飽和度;三軸底座經過改良可將高進氣陶板嵌入其中,以進行使用了軸平移技術的不飽和土壤三軸試驗。實驗結果顯示,土壤試體進行不排水靜態加載過程中,當剪切至大應變時,土壤試體表現出剪脹性;而從不排水的不飽和動態三軸試驗中發現,降低飽和度引致土壤試體抗液化潛能提升的效果並不明顯,此項發現與前人進行的研究比較後,歸結出以下幾兩點可能因素,其一為土壤顆粒大小的不同及試體到達目標飽和度階段採用的流程不同所致,研究成果在進行討論後統整出結論及研究建議,本研究的成果可成為後人進行不飽和土壤三軸試驗的參考。 | zh_TW |
| dc.description.abstract | Dynamic properties are often determined for sand at completely dry or completely saturated condition. Available correlation relationships for dynamic parameters and liquefaction potential are mainly applicable for saturated soils. The objective of this research is to perform extensive laboratory study (in terms of static triaxial tests, cyclic triaxial tests and flow pump tests) to determine the static and dynamic properties of unsaturated sand. The modified procedures for unsaturated sample preparation and conducting triaxial tests are developed, including the usage of wet pluviation for preparing remold specimens, usage of flow pump device for controlling the degree of saturation, modification of the pedestal in the triaxial apparatus for the fulfillment of the axis translation technique. The test results show that the unsaturated soil specimens exhibit dilative behavior under static loading with undrained condition at large axial strain. On the other hand, unlike the trend observed by other researchers, lowering the degree of saturation do not significantly increase the liquefaction resistance. This inconsistence may be due to the difference in the grain size of the specimens and the method to achieve the unsaturated state. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:52:49Z (GMT). No. of bitstreams: 1 U0001-0808202017061500.pdf: 13050064 bytes, checksum: 4035a1f775d6b041d48191566ee4e677 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝辭 I 摘要 III ABSTRACT IV TABLE OF CONTENTS V LIST OF FIGURES VIII LIST OF TABLE XIII SYMBOLS XIV CHAPTER 1 INTRODUCTION 1 1.1 Introduction 1 1.2 Research Method 2 1.3 Thesis Organization 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 Fundamental of Unsaturated Soil Behavior 4 2.1.1 Composition of Unsaturated Soil 5 2.1.2 Definition of Unsaturated Soil Strength 7 2.1.3 Axis-Translation Technique 10 2.1.4 Soil-Water Characteristic Curve (SWCC) 11 2.1.5 Measurements of Matric Suction 14 2.2 Unsaturated Static Triaxial Test 18 2.2.1 Selection of Strain Rate 19 2.2.2 Large Deformation State and Corresponding Critical State 21 2.3 Soil Liquefaction 27 2.3.1 Liquefaction Failure Criteria 28 2.3.2 Types of Liquefaction Failure 28 2.3.3 Liquefaction Resistance 31 2.4 Unsaturated Soil Liquefaction 36 2.4.1 Unsaturated Cyclic Test without Applying Axis Translation Technique 38 2.4.2 Research on Unsaturated Soil Liquefaction (Okamura and Soga, 2006) 39 2.4.3 Research on Unsaturated Soil Liquefaction (Okamura and Noguchi, 2009) 41 2.4.4 Research on Unsaturated Soil Liquefaction (Unno et al., 2008) 44 2.5 Soil Specimen Remold Methods 47 2.6 Summary 49 CHAPTER 3 EXPERIMENTAL PROGRAM 51 3.1 Objectives 51 3.2 Materials and Physical Properties 51 3.3 Preparation of The Experimental Specimen 55 3.4 Apparatus 56 3.4.1 GDS Instrument System 56 3.4.2 High Air Entry Ceramic 63 3.4.3 Modified Pedestal 65 3.4.4 Flow pump 67 3.5 Saturation of HAE ceramic 69 3.6 Modified Consolidated Isotropic Undrained Triaxial Compression (CIUC) test 71 3.6.1 Remold Stage 71 3.6.2 Saturation Stage 76 3.6.3 Consolidation Stage 77 3.6.4 Water Exiting Stage 79 3.6.5 Loading Stage 81 3.7 Modified Consolidated Isotropic Undrained Cyclic Triaxial (CIUCyc) test 82 3.8 Flow Pump Test 85 CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSIONS 86 4.1 Results and Discussions of Flow Pump Test 87 4.2 Results of the Modified CIUC tests 90 4.2.1 Advantage of Using Modified Pedestal 93 4.2.2 Effect of Degree of Saturation on Soil Behavior under Static Triaxial Test 95 4.2.3 Failure Mode After CIUC Test 100 4.3 Results and Discussions of Modified CIUCyc tests 101 4.3.1 Saturated Specimen 105 4.3.2 Unsaturated Specimen 111 4.3.3 Liquefaction Failure Mode 119 4.4 Results and Discussion of Effect of Degree of Saturation on Liquefaction Resistance 120 4.4.1 Effect of Degree of Saturation on CSR-N Curves 120 4.4.2 Liquefaction Resistance Ratio 121 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 126 5.1 Conclusions 126 5.2 Recommendations for Future Researches 129 REFERENCES 130 APPENDIX A 140 APPENDIX B 172 | |
| dc.language.iso | en | |
| dc.subject | 土壤液化 | zh_TW |
| dc.subject | 三軸試驗 | zh_TW |
| dc.subject | 土壤剪脹性 | zh_TW |
| dc.subject | 濕霣降法 | zh_TW |
| dc.subject | 定流量泵 | zh_TW |
| dc.subject | 軸平移技術 | zh_TW |
| dc.subject | 不飽和土壤 | zh_TW |
| dc.subject | triaxial test | en |
| dc.subject | dilation | en |
| dc.subject | soil liquefaction | en |
| dc.subject | axis translation technique | en |
| dc.subject | flow pump device | en |
| dc.subject | wet pluviation method | en |
| dc.subject | unsaturated soil | en |
| dc.title | 以實驗方法探討不飽和砂質土壤之液化行為研究 | zh_TW |
| dc.title | Experimental Investigation of the Liquefaction Behavior of Unsaturated Sandy Soil under Cyclic Loading | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊國鑫(Kuo-Hsin Yang),鄧福宸(Fuchen Teng) | |
| dc.subject.keyword | 不飽和土壤,軸平移技術,定流量泵,濕霣降法,土壤剪脹性,三軸試驗,土壤液化, | zh_TW |
| dc.subject.keyword | unsaturated soil,axis translation technique,flow pump device,wet pluviation method,dilation,triaxial test,soil liquefaction, | en |
| dc.relation.page | 175 | |
| dc.identifier.doi | 10.6342/NTU202002685 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202017061500.pdf 未授權公開取用 | 12.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
