請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51832
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹恆偉(Hen-Wai Tsao) | |
dc.contributor.author | Chieh-Fan Chang | en |
dc.contributor.author | 張介凡 | zh_TW |
dc.date.accessioned | 2021-06-15T13:52:15Z | - |
dc.date.available | 2016-10-12 | |
dc.date.copyright | 2015-10-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-09-21 | |
dc.identifier.citation | [1]K. Bao, X. Fan, L. Tang, Z. Hua, Z. Wang, 'A programmable gain amplifier for multi-mode multi-standard wireless receivers,' Solid-State and Integrated Circuit Technology, 2014 12th International Conference, pp. 28-31.
[2]S. Shim, B. Koo, S. Hong, 'A highly-linear CMOS RF programmable- gain driver amplifier with a digital-step differential attenuator for RF transmitters,' in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2013, pp. 455-458. [3]Y. K. Hsieh, H. H. Hsieh, L. H. Lu, 'A wideband programmable-gain amplifier for 60GHz applications in 65nm CMOS,' VLSI Design, Automation, and Test, Apr. 2013, pp. 22-24. [4]T. W. Kim, B. Kim, 'A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications,' IEEE J. Solid-State Circuits, vol.41, no.4, pp. 945-953, Apr. 2006. [5]S. Y. Hung, K. H. Chan, Chen, C.C.-P., 'A high dynamic range programmable gain amplifier for HomePlug AV powerline communication system,' IEEE Trans. Circuits Syst. I., pp. 2715-2718, May 2013. [6]Z. Hou, Q. Pan, Y. Wang, L. Wu, Yue, C.P., 'A 23-mW 30-Gb/s digitally programmable limiting amplifier for 100GbE optical receivers,' in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2014, pp. 279-282. [7]H. D. Lee, K. A. Lee, S. Hong, 'A Wideband CMOS Variable Gain Amplifier With an Exponential Gain Control,' IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1363-1373, Jun. 2007. [8]K.T.B., K. Ma, K.S. Yeo, 'Temperature-Compensated dB-linear Digitally Controlled Variable Gain Amplifier With DC Offset Cancellation,' IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2648-2661, Jul. 2013. [9]T. Yamaji, N. Kanou, T. Itakura, 'A temperature-stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range,' IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 553-558, May 2002. [10]C. C. Chang, S. I. Liu, 'Pseudo-exponential function for MOSFETs in saturation,' IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. , vol. 47, no. 11, pp. 1318-1321, Nov. 2000. [11]Q. H. Duong, Q. Le, C. W. Kim, S. G. Lee, 'A 95-dB linear low-power variable gain amplifier,' IEEE Trans. Circuits Syst. I., vol. 53, no. 8, pp. 1648-1657, Aug. 2006. [12]H. Liu, X. Zhu, C.C. Boon, X. He, 'Cell-Based Variable-Gain Amplifiers With Accurate dB-Linear Characteristic in 0.18 µm CMOS Technology,' IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 586-596, Feb. 2015. [13]H. H. Nguyen, H. N. Nguyen, J. S. Lee, S. G. Lee, 'A Binary-Weighted Switching and Reconfiguration-Based Programmable Gain Amplifier,' IEEE Trans. Circuits Syst. II, Express Briefs, vol. 56, no. 9, pp. 699-703, Sep. 2009. [14]X. Zhang, S. Mirabbasi, L. Lampe, 'A Temperature-stable 60-dB programmable- gain amplifier in 0.13-µm CMOS,' IEEE Trans. Circuits Syst., pp. 1009-1012, May 2011. [15]I. L. Abdel-Hafez, Y. A. Khalaf, F. A. Farag, 'Design of wide band PVGA for UBW applications,' Communications and Photonics Conference (SIECPC), pp. 1-4, April 2011. [16]S. Vlassis, 'CMOS current-mode pseudo-exponential function circuit,' Electronic Lett., vol. 37, pp. 998-1000, Apr. 2001. [17]I. Choi, H. Seo, B. Kim, 'Accurate dB-Linear Variable Gain Amplifier With Gain Error Compensation,' IEEE J. Solid-State Circuits, vol. 48, pp. 456-464, Feb. 2013. [18]C. T. Fu, H. Luong, 'A CMOS linear-in-dB high-linearity variable-gain amplifier for UWB receivers,' in IEEE Asia Solid-State Circuits Conf. Dig. Tech. Papers, 2007, pp. 103–106. [19]H. Elwan, A. Tekin, K. Pedrotti, 'A Differential-Ramp Based 65 dB-Linear VGA Technique in 65 nm CMOS,' IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2503-2514, Sep. 2009. [20]T. Y. Lo, C. C. Hung, 'IV CMOS Gm-C Filters, Design and Applications,' Springer, 2009. [21]Behzad Razavi. RF microelectronics 2nd edition. Prentice Hall, Upper Saddle River, NJ, 2012. [22]G. Wu, L. Belostotski, J.W. Haslett, 'A broadband Variable Gain Amplifier for the Square Kilometer Array,' IEEE Trans. Circuits Syst., pp.2267-2270, May 2013. [23]N. Lin, F. Fang, Z. L. Hong, H. Fang, 'A CMOS broadband precise programmable gain amplifier with bandwidth extension technique,' in Proceedings of IEEE Asian Solid-State Circuits Conference, pp. 225-228, Nov. 2011. [24]S. D'Amico, M. De Blasi, M. De Matteis, A. Baschirotto, 'A 255 MHz Programmable Gain Amplifier and Low-Pass Filter for Ultra Low Power Impulse-Radio UWB Receivers,' IEEE Trans. Circuits Syst. I, vol. 59, no. 2, pp. 337-345, Feb. 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51832 | - |
dc.description.abstract | 第五代大型多輸入多輸出無線通訊系統的發展近期來備受矚目,而其核心架構基本上使用空分多址技術以滿足高速資料傳送的需求。然而,此架構的弱點在於容易受到嚴重的時變通道衰減與陣列型天線彼此間增益變異的影響,因此自動增益控制機制對於無線發射/接收機而言就變得非常重要,其主要功能在於等化訊號的強度以滿足系統對於傳輸訊號之訊雜比與線性度的要求,使訊號能夠被正確解調。而可編程增益放大器電路作為自動增益控制電路中非常關鍵的零組件,需要一定的可靠度以確保電路在任何製程與溫度變異的情況下,還能夠維持訊號增益控制的精準度,其分析與設計考量將在本論文中詳述。
本論文的研究方向主要著重在使用於無線接收機前端電路之寬頻、高精準度且具備增益誤差與溫度補償機制的可編程增益放大器的分析與設計,並藉由90-nm互補式金氧半導體製程實作出分別由三位元與五位元數位控制的dB線性可編程增益放大器,其中應用到的電路技巧包括同時使用兩種指數趨近法與具增益誤差補償之可切換電阻網絡架構以提升增益控制的精準度;改良Cherry-Hooper放大器電路以提升操作頻寬;結合自適性偏壓與帶差參考電壓電路以補償溫度變異對於電路造成的影響。 下線製作與實測結果顯示,在此提出的可編程增益放大器其操作頻寬超過1.2HGz,整體增益控制範圍超過52dB,同時具有極小的dB線性增益誤差與溫度變化(-10°C~95°C)所造成的增益偏移;在1.2V電源供應下,此兩種三位元與五位元數位控制的dB線性可編程增益放大器分別消耗7.84mW與7.2mW。 | zh_TW |
dc.description.abstract | 5th-generation (5G) massive multi-input multi-output (MIMO) communication has been developed recently in order to satisfy the demand of high data rate transmission by employing space division multiple access (SDMA). However, this architecture suffers from severe time variant channel loss and gain variation of antenna array, and automatic gain control (AGC) becomes an essential function in wireless receivers to equalize the strength of transmitted signal so that the required signal SNR and linearity for proper decoding can be met. As a critical component of AGC, programmable gain amplifier (PGA) with high reliability is required to ensure enough precision of gain control over wide process and temperature variations.
This thesis is focused on the analysis and design of wideband, high-precision PGA with gain-error and temperature compensation for the receiver analog front-end. Two dB-linear PGAs with 3-bit and 5-bit digital control designed in a standard 90-nm CMOS process are presented. In these works, several techniques are employed such as the use of two pseudo-exponential approximations and gain-error-compensated switchable resistor networks for gain-accuracy enhancement, a modified Cherry-Hooper amplifier topology for bandwidth extension, and adaptive biasing circuit combined with bandgap reference for temperature compensation. According to the experimental results, the proposed PGAs can achieve a bandwidth of 1.2 GHz and a gain control range of more than 52 dB with small dB-linear gain error and gain deviation over -10°C~95°C while consuming 7.84 mW (3-bit PGA core) and 7.2 mW (5-bit PGA core) through 1.2-V supply. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:52:15Z (GMT). No. of bitstreams: 1 ntu-104-R01943003-1.pdf: 5983340 bytes, checksum: d5c94ff51fdcc749e4e4633beb53899b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III Abstract V Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Application of Programmable Gain Amplifier (PGA) 3 1.3 5th-Generation (5G) Communication 4 1.4 Contribution of this Thesis 5 Chapter 2 Background 6 2.1 Fundamentals of Automatic Gain Control 6 2.2 Fundamentals of Programmable Gain Amplifier 11 2.2.1 Amplifier Circuit Performance Basics 11 2.2.2 DB-Linear Gain Characteristics of VGAs/PGAs 17 2.2.3 Conventional Topologies of DB-Linear VGAs/PGAs 18 2.2.4 Circuit Techniques for High-Linearity Applications 22 2.3 Chapter Summary 25 Chapter 3 A Wideband, dB-Linear Programmable Gain Amplifier With Gain Error Compensation 26 3.1 Introduction 27 3.2 The Proposed PGA Architecture and Design Considerations 29 3.2.1 Proposed Exponential Approximation 30 3.2.2 Design of PGA gain cells 33 3.2.3 Mechanism of dB-linear Gain Control 36 3.2.4 Resistor Network and Gain Error Compensation 38 3.2.5 Ft-Doubler Output Buffer 44 3.3 Experimental Results 45 3.4 Chapter Summary 49 Chapter 4 A Wideband, High-Precision Programmable Gain Amplifier With Temperature Compensation 50 4.1 Introduction 51 4.2 The Proposed PGA and Compensation Circuit Architecture 53 4.2.1 Design of PGA gain cells 55 4.2.2 Non-Ideal Factor Analysis of dB-linear Gain Control 57 4.2.3 Temperature Compensation Techniques 59 4.2.4 Design of Resistor Network and Digital Control 61 4.2.5 Compensation Circuit for PGA Gain Cells 65 4.2.6 Constant Current/Swing/gm Circuit 69 4.3 Experimental Results 72 4.4 Chapter Summary 78 Chapter 5 Future Work 79 5.1 Noise Considerations 80 5.2 Linearity Considerations 82 Chapter 6 Conclusion 85 Bibliography 87 | |
dc.language.iso | en | |
dc.title | 使用於寬頻無線通訊之高精準度可編程增益放大器設計 | zh_TW |
dc.title | Design of Precision Programmable Gain Amplifier for Broadband Wireless Communication Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉深淵(Shen-Iuan Liu),陳筱青(Hsiao-Chin Chen),邱煥凱(Hwann-Kaeo Chiou) | |
dc.subject.keyword | 互補式金氧半導體,第五代行動通訊,多輸入多輸出,可編程增益放大器,自動增益控制,Cherry-Hooper放大器,dB線性,指數趨近,自適性偏壓,增益誤差補償,溫度補償, | zh_TW |
dc.subject.keyword | CMOS,5th-generation (5G) communication,multi-input multi-output (MIMO),programmable gain amplifier (PGA),automatic gain control (AGC),Cherry-Hooper amplifier,dB-linear,pseudo-exponential approximation,adaptive biasing,gain-error compensation,temperature compensation, | en |
dc.relation.page | 88 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-09-22 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。