Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51827
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李克強
dc.contributor.authorHsuan Fangen
dc.contributor.author房軒zh_TW
dc.date.accessioned2021-06-15T13:51:58Z-
dc.date.available2020-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-09-23
dc.identifier.citation[1] J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena. John Wiley & Sons, Inc., 2005.
[2] D.J. Shaw, Introduction to Colloid and Surface Chemistry. Butterworth-Heinemann, Oxford, 1992.
[3] R. Hunter, Foundations of Colloid Science. Oxford University Press., 1987.
[4] B. Derjaguin, L. Landau, Acta Physicochim URSS 14 (1941) 633.
[5] E.J.W. Verwey, J.T.G. Overbeek, K. Van Nes, Theory of the Stability of Lyophobic Colloids: the Interaction of Sol Particles Having an Electric Double Layer. Elsevier New York, 1948.
[6] D.H. Everett, D. Everett, Basic principles of colloid science. Royal Society of Chemistry London, 1988.
[7] H. Helmholtz, Annalen der Physik 165 (1853) 211.
[8] G. Gouy, Journal of Physics 9 (1910) 457.
[9] D.L. Chapman, Philosophical Magazine Series 6 25 (1913) 475.
[10] 劉陽橋, 奈米粉體的分散及表面改性. 五南圖書出版股份有限公司, 2005.
[11] D.L. Nelson, A.L. Lehninger, M.M. Cox, Lehninger principles of biochemistry. Macmillan, 2008.
[12] 張有義, 郭蘭生, 膠體及界面化學入門. 高立圖書有限公司, 台北市, 1997.
[13] D.J. Wilkins, R.H. Ottewill, J. Theor. Biol. 2 (1962) 165.
[14] D.H. Heard, G.V.F. Seaman, J. Gen. Physiol. 43 (1960) 635.
[15] H.M. Huotari, G. Trägårdh, I.H. Huisman, Chemical Engineering Research and Design 77 (1999) 461.
[16] S.N. Jagannadh, H.S. Muralidhara, Industrial & Engineering Chemistry Research 35 (1996) 1133.
[17] B. Sarkar, S. De, Separation and Purification Technology 74 (2010) 73.
[18] A. Saxena, B.P. Tripathi, M. Kumar, V.K. Shahi, Advances in Colloid and Interface Science 145 (2009) 1.
[19] R.J. Wakeman, E.S. Tarleton, Chemical Engineering Science 42 (1987) 829.
[20] R.J. Wakeman, C.J. Williams, Separation and Purification Technology 26 (2002) 3.
[21] L. Besra, M. Liu, Prog. Mater. Sci. 52 (2007) 1.
[22] A.L. Dalisa, IEEE Trans. Electron Devices 24 (1977) 827.
[23] M. Von Smoluchowski, Zeitschrift fur Physikalische Chemie–Stochiometrie und Verwandtschaftslehre 92 (1917) 129.
[24] E. Huckel, Physikalische Zeitschrift 25 (1924) 204.
[25] D.C. Henry, Proc. R. soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character 133 (1931) 106.
[26] J.T.G. Overbeek, Advances in Colloid Science 3 (1950) 97.
[27] F. Booth, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 203 (1950) 514.
[28] P.H. Wiersema, A.L. Loeb, J.T. Overbeek, J. Colloid Interface Sci. 22 (1966) 78.
[29] R.W. Obrien, L.R. White, Journal of the Chemical Society-Faraday Transactions Ii 74 (1978) 1607.
[30] S. Levine, G.H. Neale, J. Colloid Interface Sci. 47 (1974) 520.
[31] E. Lee, J.W. Chu, J.P. Hsu, J. Colloid Interface Sci. 209 (1999) 240.
[32] J.W. Chu, W.H. Lin, E. Lee, J.P. Hsu, Langmuir 17 (2001) 6289.
[33] M.H. Chih, E. Lee, J.P. Hsu, J. Colloid Interface Sci. 248 (2002) 383.
[34] H.J. Keh, J.L. Anderson, J. Fluid Mech. 153 (1985) 417.
[35] M. Teubner, J. Chem. Phys. 76 (1982) 5564.
[36] F.A. Morrison, J.J. Stukel, J. Colloid Interface Sci. 33 (1970) 88.
[37] H. Ohshima, Sci. Technol. Adv. Mater. 10 (2009).
[38] W.L. Cheng, Y.Y. He, E. Lee, Journal of Colloid and Interface Science 335 (2009) 130.
[39] R.J. Hill, D.A. Saville, W.B. Russel, Journal of Colloid and Interface Science 258 (2003) 56.
[40] Y.Y. He, E. Lee, Chemical Engineering Science 63 (2008) 5719.
[41] A. Tiselius, Trans. Faraday Soc. 33 (1937) 524.
[42] B.D. Hames, Gel Electrophoresis of Proteins: A Practical Approach: A Practical Approach. Oxford University Press, 1998.
[43] J.Y. Han, J.P. Fu, R.B. Schoch, Lab on a Chip 8 (2008) 23.
[44] Y. Osada, J.P. Gong, Y. Tanaka, J. Macromol. Sci.-Polym. Rev C44 (2004) 87.
[45] A.S. Hoffman, Adv. Drug Deliv. Rev. 54 (2002) 3.
[46] J.L. Viovy, Rev. Mod. Phys. 72 (2000) 813.
[47] H. Yoshioka, Y. Mori, M. Shimizu, Anal. Biochem. 323 (2003) 218.
[48] 蔡豐安, 臺灣大學化學工程學研究所博士學位論文 (2011).
[49] J. Boileau, G.W. Slater, Electrophoresis 22 (2001) 673.
[50] G.W. Slater, H.L. Guo, Electrophoresis 17 (1996) 977.
[51] G.W. Slater, H.L. Guo, Electrophoresis 17 (1996) 1407.
[52] G.W. Slater, J.R. Treurniet, J. Chromatogr. A 772 (1997) 39.
[53] J.F. Mercier, G.W. Slater, Electrophoresis 19 (1998) 1560.
[54] J. Labrie, J.F. Mercier, G.W. Slater, Electrophoresis 21 (2000) 823.
[55] J.F. Mercier, G.W. Slater, Macromolecules 34 (2001) 3437.
[56] J.F. Mercier, F. Tessier, G.W. Slater, Electrophoresis 22 (2001) 2631.
[57] G. Imanidis, P. Luetolf, J. Pharm. Sci. 95 (2006) 1434.
[58] U. Pyell, Electrophoresis 31 (2010) 814.
[59] S.A. Allison, Y. Xin, H. Pei, Journal of Colloid and Interface Science 313 (2007) 328.
[60] S. Park, K. Hamad-Schifferli, J. Phys. Chem. C 112 (2008) 7611.
[61] A. Delgado, Interfacial electrokinetics and electrophoresis. CRC, 2002.
[62] D.C. Prieve, J.L. Anderson, J.P. Ebel, M.E. Lowell, J. Fluid Mech. 148 (1984) 247.
[63] W.J. Lechnick, J.A. Shaeiwitz, Journal of Colloid and Interface Science 102 (1984) 71.
[64] J.L. Anderson, M.E. Lowell, D.C. Prieve, J. Fluid Mech. 117 (1982) 107.
[65] X.G. Zhang, W.L. Hsu, J.P. Hsu, S.J. Tseng, Journal of Physical Chemistry B 113 (2009) 8646.
[66] S. Dukhin, B. Derjaguin, Surface and Colloid Science, Wiley, New York 7 (1974) 36.
[67] S.P. Bakanov, V.I. Roldughin, Aerosol Science and Technology (1987) 249.
[68] M.J. Pilat, A. Prem, Journal of the Air Pollution Control Association (1977) 982.
[69] A. Jaworek, W. Balachandran, A. Krupa, J. Kulon, M. Lackowski, Environmental Science and Technology (2006) 6197.
[70] S.S. Dukhin, Z.R. Ulberg, G.L. Dvornichenko, B.V. Deryagin, Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science 31 (1982) 1535.
[71] B. Deryagin, S. Dukhin, A. Korotkova, Colloid Journal Of The Ussr 40 (1978) 531.
[72] D.C. Prieve, R.E. Smith, R.A. Sander, H.L. Gerhart, Journal of Colloid and Interface Science 71 (1979) 267.
[73] D.C. Prieve, H.L. Gerhart, R.E. Smith, Industrial & Engineering Chemistry Product Research and Development 17 (1978) 32.
[74] Z. Ulberg, A. Dukhin, Progress in organic coatings 18 (1990) 1.
[75] B. Abécassis, et al., New J Phys 11 (2009) 075022.
[76] B. Abecassis, C. Cottin-Bizonne, C. Ybert, A. Ajdari, L. Bocquet, Nat. Mater. 7 (2008) 785.
[77] J.J. McDermott, A. Kar, M. Daher, S. Klara, G. Wang, A. Sen, D. Velegol, Langmuir 28 (2012) 15491.
[78] A. Kar, R. Guha, N. Dani, D. Velegol, M. Kumar, Langmuir 30 (2014) 793.
[79] J.L. Anderson, M.E. Lowell, D.C. Prieve, J. Fluid Mech. (1982) 101.
[80] D.C. Prieve, R. Roman, Journal of the Chemical Society-Faraday Transactions Ii 83 (1987) 1287.
[81] Y. Pawar, Y.E. Solomentsev, J.L. Anderson, Journal of Colloid and Interface Science 155 (1993) 488.
[82] J. Lou, C.Y. Shih, E. Lee, Langmuir 26 (2010) 47.
[83] J. Lou, C.Y. Shih, E. Lee, Journal of Colloid and Interface Science 331 (2009) 227.
[84] J. Lou, E. Lee, J Phys Chem C 112 (2008) 2584.
[85] Y.C. Chang, H.J. Keh, Journal of Colloid and Interface Science 322 (2008) 634.
[86] H.J. Keh, Y.L. Li, Langmuir 23 (2007) 1061.
[87] J.P. Hsu, J. Lou, Y.Y. He, E. Lee, J Phys Chem B 111 (2007) 2533.
[88] J. Lou, Y.Y. He, E. Lee, Journal of Colloid and Interface Science 299 (2006) 443.
[89] P.Y. Chen, H.J. Keh, Journal of Colloid and Interface Science 286 (2005) 774.
[90] Y.K. Wei, H.J. Keh, Journal of Colloid and Interface Science 248 (2002) 76.
[91] P.Y. Chen, H.J. Keh, Chem Eng Sci 57 (2002) 2885.
[92] Y.K. Wei, H.J. Keh, Langmuir 17 (2001) 1437.
[93] H.J. Keh, Y.K. Wei, Langmuir 16 (2000) 5289.
[94] H.J. Keh, S.C. Luo, Langmuir 12 (1996) 657.
[95] H.J. Keh, J.S. Jan, Journal of Colloid and Interface Science 183 (1996) 458.
[96] P.O. Staffeld, J.A. Quinn, Journal of Colloid and Interface Science 130 (1989) 69.
[97] P.O. Staffeld, J.A. Quinn, Journal of Colloid and Interface Science 130 (1989) 88.
[98] J.P. Ebel, J.L. Anderson, D.C. Prieve, Langmuir 4 (1988) 396.
[99] W.J. Lechnick, J.A. Shaeiwitz, Journal of Colloid and Interface Science 104 (1985) 456.
[100]J.A. Shaeiwitz, W.J. Lechnick, Chem Eng Sci 39 (1984) 799.
[101]R.M. Fuoss, Science 108 (1948) 545.
[102]H. Darcy, Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris, 1856.
[103]H.C. Brinkman, Applied Scientific Research Section a-Mechanics Heat Chemical Engineering Mathematical Methods 1 (1947) 27.
[104]P. Debye, A.M. Bueche, The Journal of Chemical Physics 16 (1948) 573.
[105]J.G. Kirkwood, J. Riseman, The Journal of Chemical Physics 16 (1948) 565.
[106]B. Felderhof, J. Deutch, The Journal of Chemical Physics 62 (1975) 2391.
[107]S.S. Dukhin, R. Zimmermann, J.F.L. Duval, C. Werner, Journal of Colloid and Interface Science 350 (2010) 1.
[108]J.J. Hermans, J Polym Sci 18 (1955) 527.
[109]J.J. Hermans, H. Fujita, Koninklijke Nederlandse Akademie Wetenschappen Proceedings Series B58 (1955) 182.
[110]J.T.G. Overbeek, D. Stigter, Recl. Trav. Chim. Pays-Bas-J. Roy. Neth. Chem. Soc. 75 (1956) 543.
[111]M. Nagasawa, A. Soda, I. Kagawa, Journal of Polymer Science 31 (1958) 439.
[112]N. Imai, K. Iwasa, Isr. J. Chem. 11 (1973) 223.
[113]N.P. Miller, J.C. Berg, R.W. O'Brien, J. Colloid Interface Sci. 153 (1992) 237.
[114]H. Ohshima, Journal of Colloid and Interface Science 225 (2000) 233.
[115]Y.Y. He, E. Wu, E. Lee, Chemical Engineering Science (2010).
[116]H.-P. Hsu, E. Lee, Electrochemistry Communications 15 (2012) 59.
[117]C.H. Huang, H.P. Hsu, E. Lee, Physical chemistry chemical physics 14 (2012) 657.
[118]L.H. Yeh, K.L. Liu, J.P. Hsu, The Journal of Physical Chemistry C 116 (2012) 367.
[119]Y.K. Wei, H.J. Keh, Journal of Colloid and Interface Science 269 (2004) 240.
[120]K.-L. Liu, J.-P. Hsu, W.-L. Hsu, L.-H. Yeh, S. Tseng, Electrophoresis 33 (2012) 1068.
[121]H. Faxén, Kolloid-Zeitschrift 167 (1959) 146.
[122]K. Wilson, J.M. Walker, Principles and techniques of biochemistry and molecular biology. Cambridge University Press, 2010.
[123]H. Svensson, Acta Chem. Scand 15 (1961).
[124]N.C. Brady, R.R. Weil, The nature and properties of soils. Prentice-Hall Inc., 1996.
[125]E. Tombácz, M. Szekeres, Applied Clay Science 34 (2006) 105.
[126]B.W. Ninham, Parsegia.Va, J. Theor. Biol. 31 (1971) 405.
[127]D. Chan, T.W. Healy, L.R. White, Journal of the Chemical Society-Faraday Transactions I 72 (1976) 2844.
[128]D. Chan, J.W. Perram, L.R. White, T.W. Healy, Journal of the Chemical Society-Faraday Transactions I 71 (1975) 1046.
[129]S. Usui, Journal of Colloid and Interface Science 320 (2008) 353.
[130]D.Y. Chan, T.W. Healy, T. Supasiti, S. Usui, J Colloid Interface Sci 296 (2006) 150.
[131]S. Usui, J Colloid Interface Sci 280 (2004) 113.
[132]S.L. Carnie, D.Y.C. Chan, J. Stankovich, Journal of Colloid and Interface Science 165 (1994) 116.
[133]S.L. Carnie, D.Y.C. Chan, Journal of Colloid and Interface Science 155 (1993) 297.
[134]S.L. Carnie, D.Y.C. Chan, Journal of Colloid and Interface Science 161 (1993) 260.
[135]J.W. Krozel, D.A. Saville, Journal of Colloid and Interface Science 150 (1992) 365.
[136]J.A. Davis, R.O. James, J.O. Leckie, Journal of Colloid and Interface Science 63 (1978) 480.
[137]D.C. Prieve, E. Ruckenstein, J. Theor. Biol. 56 (1976) 205.
[138]P. Tsai, H. Fang, E. Lee, J Phys Chem B 115 (2011) 6484.
[139]Y.P. Tang, M.H. Chih, E. Lee, J.P. Hsu, Journal of Colloid and Interface Science 242 (2001) 121.
[140]E. Lee, F.Y. Yen, J.P. Hsu, Electrophoresis 21 (2000) 475.
[141]H. Ohshima, Theory of colloid and interfacial electric phenomena. Academic Press, 2006.
[142]H. Ohshima, T. Kondo, J. Theor. Biol. 128 (1987) 187.
[143]H. Ohshima, T. Kondo, Biophysical Chemistry 29 (1988) 277.
[144]M. Nakamura, H. Ohshima, T. Kondo, Colloids and Surfaces B: Biointerfaces 2 (1994) 445.
[145]K. Morita, N. Muramatsu, H. Ohshima, T. Kondo, Journal of Colloid and Interface Science 147 (1991) 457.
[146]S. Tseng, T.-H. Hsieh, L.-H. Yeh, N. Wang, J.-P. Hsu, Colloids and Surfaces B: Biointerfaces 102 (2013) 864.
[147]X.G. Zhang, J.P. Hsu, Z.S. Chen, L.H. Yeh, M.H. Ku, S. Tseng, J Phys Chem B 114 (2010) 1621.
[148]S. Trigueros, J. Arsuaga, M.E. Vazquez, D.W. Sumners, J. Roca, Nucleic Acids Res 29 (2001) e67.
[149]V.V. Abhyankar, M.A. Lokuta, A. Huttenlocher, D.J. Beebe, Lab on a Chip 6 (2006) 389.
[150]J. Diao, L. Young, S. Kim, E.A. Fogarty, S.M. Heilman, P. Zhou, M.L. Shuler, M. Wu, M.P. DeLisa, Lab on a Chip 6 (2006) 381.
[151]R.L. Smith, C.J. Demers, S.D. Collins, Microfluid. Nanofluid. 9 (2010) 613.
[152]M. Hussaini, T. Zang, Annual Review of Fluid Mechanics 19 (1987) 339.
[153]S. Kuwabara, J. Phys. Soc. Jpn. 14 (1959) 527.
[154]E.K. Zholkovskij, J.H. Masliyah, V.N. Shilov, S. Bhattachalgee, Adv. Colloid Interface Sci. 134-35 (2007) 279.
[155]J.P. Hsu, E. Lee, F.Y. Yen, J Chem Phys 112 (2000) 6404.
[156]P. Tsai, E. Lee, Soft Matter 7 (2011) 5789.
[157]H. Brinkman, Appl. Sci. Res. 1 (1949) 27.
[158]E.H. Jones, Reynolds, D. A., Wood, A. L. and Thomas, D. G., Ground Water (2010).
[159]V. Pomes, A. Fernandez, D. Houi, Chem. Eng. J. 87 (2002) 251.
[160]J. Feng, P. Ganatos, S. Weinbaum, J. Fluid Mech. 375 (1998) 265.
[161]N.A. Doggett, C.L. Smith, C.R. Cantor, Nucleic Acids Res. 20 (1992) 859.
[162]Y.Y. He, E. Wu, E. Lee, Chem Eng Sci 65 (2010) 5507.
[163]G. Neale, N. Epstein, Chem Eng Sci 28 (1973) 1865.
[164]L.-H. Yeh, Y.-H. Tai, N. Wang, J.-P. Hsu, S. Qian, Nanoscale 4 (2012) 7575.
[165]J.-P. Hsu, C.-H. Huang, S. Tseng, Electrophoresis 34 (2013) 785.
[166]H. Ohshima, T. Kondo, Biophysical Chemistry 32 (1988) 161.
[167]J.F. Duval, V.I. Slaveykova, M. Hosse, J. Buffle, K.J. Wilkinson, Biomacromolecules 7 (2006) 2818.
[168]C. Canuto, M.Y. Hussaini, T.A. Zang, Spectral Methods in Fluid Dynamics. Springer, New York, 1986.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51827-
dc.description.abstract本研究主要以假性光譜法對軟物質系統之電動力學現象如電泳以及擴散泳進行數值模擬,其中討論軟物質系統包含聚電解質及凝膠系統並考慮電荷調節現象的影響。文中先針對電動力學、電荷調節現象以及各種系統及其應用作一系列文獻回顧,並說明本次研究目的;而於第二章做進一步的理論分析。第三章介紹相關數值方法。其後三章(四、五、六章)則依序針對表面調節硬粒子之凝膠電泳現象、多孔粒子於電解質溶液中的擴散泳現象以及電荷調節密集多孔系統之電泳現象等電動力學現象做深入研究分析。
研究結果發現,大體而言當粒子表面電位越高,亦或是聚電解質之高分子層固定電荷密度越高時,粒子泳動速度將隨之提升;然而相對的受外加電場�濃度場作用,其粒子周圍的離子雲扭曲也越嚴重,進而產生一誘發電場與原外加電場�濃度場競爭而降低泳動度,此現象稱為極化效應,其隨電雙層變化而造成粒子速度產生極值。極化效應的存在甚至可產生高電荷密度粒子速度低於低電荷密度粒子的特殊現象。此外,聚電解質或是凝膠之摩擦係數愈高,則使流體阻力愈大而降低泳動度。然而,摩擦係數愈高,流體對流現象減緩造成極化效應不明顯。
另一方面,電荷調節現象影響粒子電量非常顯著:當官能基解離常數愈大、pH值愈大時,有利於解離反應進行,使得解離電量較大。同時,離子強度也會影響到解離電量。
zh_TW
dc.description.abstractThe electrokinetic behavior of soft matter including polyelectrolytes amd polymer gels is investigated, with consideration of charge-regulation phenomena. A pseudo-spectral method based on Chebyshev polynomials is used to solve the resulted general electrokinetic equations.
We found, among other things, that the higher the particle surface potential or the fixed charge density of the polymer layer of the polyelectrolyte, the more serious distortion of the ion clouds, which generates an induced electric field opposite to the particle motion, thus reducing the particle mobility, as an effect referred to the polarization effect. Moreover, local extrema are observed in the mobility profile as the double layer thickness varies, which is absent in previous theoretical study which neglected the polarization effect. An interesting phenomenon is observed: a less charged particle can even move faster than a highly charged one at some situation, which is also attributed to the polarization effect. The poorer the permeability of the polyelectrolyte or the polymer gel, the slower the particle motion in general, due to the increase of the hydraulic drag force.
On the other hand, we found that the charge-regualtion phenomena has dramatic impact on the elctric condition of the particle. The higher the number of functional groups and the dissociation constant of the functional groups, the greater the charge of the particle; yet the higher the pH of the solution, the lower the charge of the particle.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:51:58Z (GMT). No. of bitstreams: 1
ntu-104-F98524067-1.pdf: 5546811 bytes, checksum: 5c382b1036ad0501f430f940c5571588 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 I
Abstract III
目錄 V
圖表目錄 XI
第一章 緒論 1
1.1 膠體懸浮液 1
1.2 電泳現象 10
1.2.1 自由溶液電泳 10
1.2.2 凝膠電泳 15
1.3 擴散泳: 20
1.3.1 擴散泳理論: 20
1.3.2 膠體粒子擴散泳現象的相關應用 22
1.3.3 硬粒子擴散泳文獻回顧: 26
1.4 聚電解質及多孔粒子模型 29
1.5 電荷調節現象: 33
1.6 論文架構 45
第二章 理論分析 46
2.1 電動力學方程組 46
2.1.1 電位方程式 46
2.1.2 離子守恆式 47
2.1.3 流場方程式 49
2.2 平衡態與擾動態 52
2.2.1 平衡態 55
2.2.2 擾動態 56
2.3 二維系統的一維化 58
2.4 粒子受力計算 60
2.5 泳動度之計算 61
2.6 計算流程 63
第三章 數值方法 65
3.1 正交配位法 66
3.2 空間映射 71
3.3 多區聯解問題 74
3.4 牛頓-拉福森 (Newton-Raphson) 疊代法 77
3.5 擾動態多變數聯解 80
3.6 數值積分 82
3.7 雙球座標球體積分 84
第四章 表面調節硬粒子之凝膠電泳現象 87
4.1 系統描述 87
4.2 邊界條件 89
4.2.1 平衡態邊界條件 89
4.2.2 擾動態邊界條件 92
4.3 系統無因次化分析 95
4.3.1 無因次特徵值 95
4.3.2 無因次一維化之主控方程式及邊界條件 97
4.4 結果討論 100
4.4.1 粒子表面官能基數量(表面調節現象參數A)對電泳行為的影響 103
4.4.2 電解質濃度(a)對電泳行為的影響 106
4.4.3 氫離子濃度(表面調節現象參數B值)對電泳行為的影響 107
4.4.4 密集程度對電泳行為的影響 111
4.4.5 高分子凝膠穿透度影響 115
4.5 本章結論 117
第五章 多孔粒子於電解質溶液中的擴散泳現象 118
5.1 系統描述 118
5.2 邊界條件 120
5.2.1 平衡態邊界條件 120
5.2.2 擾動態邊界條件 121
5.3 系統無因次化分析 126
5.4 數值無窮遠邊界處理方法 131
5.5 結果討論 134
5.5.1 固定電荷密度Qfix對擴散泳動度的影響 138
5.5.2 電雙層厚度κa對擴散泳動度的影響 140
5.5.3 由場圖觀察極化效應對電動力學的影響 148
5.5.4 多孔粒子之穿透度對擴散泳動度的影響 151
5.6 本章結論 159
第六章 電荷調節密集多孔系統之電泳現象 160
6.1 系統描述 160
6.2 邊界條件 164
6.2.1 平衡態邊界條件 164
6.2.2 擾動態邊界條件 165
6.3 系統無因次化分析 166
6.3.1 無因次特徵值 167
6.3.2 無因次一維化之主控方程式及邊界條件 168
6.4 結果討論 172
6.4.1 電解質離子強度及官能基解離常數(B)對電泳行為的影響 173
6.4.2 溶液pH對電泳行為的影響 182
6.4.3 官能基密度(A)對電泳行為的影響 185
6.4.4 密集程度對電泳行為的影響 189
6.4.5 實驗文獻比對 193
6.5 本章結論 195
符號說明 196
References 200
附錄A 常見電解質水溶液參數值 207
附錄B 座標系統簡介 209
附錄C 力積分之推導 217
附錄D 擴散泳相關邊界條件推導 223
附錄E 多孔界面流力連續條件之推導 225
附錄F 球心邊界條件設定 229
附錄G 無窮大系統計算方法 231
附錄H 微分關係式 235
附錄I 雙球系統之球體積分 暨多孔球之反離子凝聚現象 239
dc.language.isozh-TW
dc.title軟物質系統電動力學現象:擴散泳動暨電荷調節現象探討zh_TW
dc.titleElectrokinetics of Soft Matter: Diffusiophoresis and Charge-Regulation Phenomenaen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee張有義,周正堂,陳賢燁,游佳欣
dc.subject.keyword電泳,擴散泳,電荷調節現象,凝膠電泳,軟物質,電雙層極化效應,zh_TW
dc.subject.keywordElectrophoresis,Diffusiohproresis,Charge-Regulation Phenomena,Gel-Electrophoresis,Soft Matter,Double Layer Polarization Effect,en
dc.relation.page243
dc.rights.note有償授權
dc.date.accepted2015-09-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
5.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved