Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51819Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 郭瑞祥&蔣明晃 | |
| dc.contributor.author | Chao-Hsiang Shih | en |
| dc.contributor.author | 施朝翔 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:51:31Z | - |
| dc.date.available | 2015-12-01 | |
| dc.date.copyright | 2015-12-01 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-09-30 | |
| dc.identifier.citation | 中文文獻
張易晟(2014),B2C電子商務下都會區配送模型之研究,台灣大學工業工程研究所碩士論文。 楊玉玲(2012),B2C電子商務物流配送研究,科技創業月刊第八期。 英文文獻 1. Chopra, Sunil.(2003) Designing the distribution network in a supply chain.Transportation Research Part E: Logistics and Transportation Review 39.2: 123-140. 2. Clarke, G. U., and John W. Wright.(1964) Scheduling of vehicles from a central depot to a number of delivery points. Operations research 12.4: 568-581. 3. Croes, Georges A. (1958) A method for solving traveling-salesman problems.Operations Research 6.6: 791-812. 4. eMarketer. (2014). Worldwide Ecommerce Sales to Increase Nearly 20% in 2014,Retrived July 23, 2014, http://www.emarketer.com/Article/Worldwide-Ecommerce-Sales-Increase-Nearly-20-2014/1011039 5. Glover, Fred.(1989) Tabu search-part I.' ORSA Journal on computing 1.3: 190-206. 6. Glover, Fred. (1990) Tabu search—part II.' ORSA Journal on computing 2.1: 4-32. 7. Gommans, Marcel, Krish S. Krishnan, and Katrin B. Scheffold. (2001) From brand loyalty to e-loyalty: A conceptual framework. Journal of Economic and Social research 3.1: 43-58. 8. Kirkpatrick, Scott, and M. P. Vecchi. (1983) Optimization by simmulated annealing. , science 220.4598: 671-680. 9. Lee, Hau L., and Seungjin Whang. (2001) Winning the last mile of e-commerce. MIT Sloan Management Review 42.4: 54-62. 10. Lee, Pui-Mun. (2002) Behavioral model of online purchasers in e-commerce environment. Electronic Commerce Research 2.1-2: 75-85. 11. Lin, C. K. Y., and R. C. W. Kwok. (2006) Multi-objective metaheuristics for a location-routing problem with multiple use of vehicles on real data and simulated data.European Journal of Operational Research 175.3: 1833-1849. 12. Nagy, Gábor, and Saïd Salhi. (2007) Location-routing: Issues, models and methods.European Journal of Operational Research 177.2: 649-672. 13. Pyke, David F., M. Eric Johnson, and Phil Desmond. (2001) E-FULFILLMENT.Supply Chain Management Review : 27. 14. Singh, Mohini. (2002) E-services and their role in B2C e-commerce.Managing Service Quality: An International Journal 12.6: 434-446. 15. Sousa, José Carlos, and José Carlos Sousa. (2011) A multi objective approach to solve capacitated vehicle routing problems with time windows using mixed integer linear programming. International Journal of Advanced Science and Technology 28: 1-8. 16. Tavakkoli-Moghaddam, R., A. Makui, and Z. Mazloomi. (2010) A new integrated mathematical model for a bi-objective multi-depot location-routing problem solved by a multi-objective scatter search algorithm. Journal of Manufacturing Systems 29.2: 111-119. 17. Tuzun, Dilek, and Laura I. Burke. (1999) A two-phase tabu search approach to the location routing problem. European Journal of Operational Research 116.1: 87-99. 18. Yellow, P. C. (1970) A computational modification to the yells method of vehicle scheduling. Journal of the Operational Research Society,21.2: 281-283. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51819 | - |
| dc.description.abstract | 隨著全球B2C電子商務市場蓬勃發展,其相關議題也日漸備受重視。為了在激烈的競爭中脫穎而出,如何將產品快速準確地交到消費者手中更是在市場勝出不可或缺的關鍵。為了符合快速配送的特性,許多電商業者也開始建置自有車隊,透過自有車隊快速密集的配送方式滿足消費者需求,創造競爭優勢。
本研究的目的為在B2C電子商務配送中,以考量時間限制為前提,最小化配送成本。在B2C電子商務及物流配送模型中,經常以最低成本為主要的績效指標;在過去的文獻中,也有考量B2C電子商務配送時間限制下,以時效性為指標相關文獻。而在B2C電子商務配送中時效性及成本應等同重要,應都予以考慮之。故本研究同時納入時效性及成本為考量建構出配送模型。 建構出配送時間限制下最小化成本之模型後,採用啟發式演算法,分別對設施區位問題以及車輛途程問題進行求解,提供設施位置、設施數量、以及所需車輛數之建議,並改善以時間導向之循序型節省法求解路線,縮短配送時程。 本研究提供電商業者一個彈性的決策工具,可自行調整成本函數及時間限制,權衡其最適發展策略及組合,提升配送效率及提升競爭力。最後以國內知名B2C電商訂單資料為研究對象,將訂單資料匯入模型中,給予相關配送建議供企業做為參考。 | zh_TW |
| dc.description.abstract | With the fast growth of global B2C e-commerce market; its related issues are increasingly being focused. In order to stand out in the fierce competition; it is a crucial key in the marketplace for the products to be quickly and accurately delivered to consumers. As to meet the rapid distribution of products, many electrical businesses have begun to build their own teams to meet consumers’ demands through fast-intensive distribution methods and therefore to create competitive advantage.
The purpose of this study pertains to B2C e-commerce distribution in order to consider the time limit premise and to minimize distribution costs. In the B2C e-commerce and logistics distribution model, the lowest cost is often the main performance indicator. In the earlier literature, there were also considerations of B2C e-commerce distribution under time constraints and time effectiveness. In the B2C e-commerce distribution, time effectiveness and cost should be equally important and both be taken into account. For these reasons, this study also includes the time effectiveness and cost considerations to construct a distribution model. The construction of model to minimize the cost with the delivery time limit, using heuristic algorithms to solve facility location problem and vehicle routing problem respectively. Providing facility location, number of facilities, as well as recommending the number of vehicles required, improving the time-oriented sequential savings method results and to shorten delivery time. This study provides electrical business a flexible decision-making tool, which can be adjusted by a cost function and time constraints to develop optimum strategy and portfolio, which then enhance distribution efficiency competitiveness. Finally, we use the well-known B2C electricity supplier order data, giving relevant recommendations for distribution companies as a reference. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:51:31Z (GMT). No. of bitstreams: 1 ntu-104-R02546021-1.pdf: 3778597 bytes, checksum: 4fa56a56686c4afe102e91c48a3ee835 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程及架構 3 1.4 論文架構 4 第二章 文獻探討 5 2.1 B2C電商與物流配送間的關係 5 2.2 模型探討 6 2.3 求解方法 7 2.4 小結 9 第三章 模型建構 11 3.1 問題描述 11 3.2 模型假設 13 3.3 數學模型 14 3.3.1 參數設定 14 3.3.2 決策變數設定 14 3.3.3 模型表示 15 第四章 求解方法 18 4.1 啟發式演算法概述 18 4.2 設施區位問題 19 4.3 車輛途程問題 20 4.3.1 節省法 20 4.3.2 尋找起始解 23 4.3.3 路線改善法 24 第五章 數值分析 27 5.1 情境說明及參數設定 27 5.2 個案參數設定 27 5.3 個案求解過程 32 5.4 求解結果呈現與比較 39 第六章 結論與建議 43 6.1 結論及管理意涵 43 6.2 研究貢獻 44 6.3 研究限制 44 6.4 未來研究方向 44 參考文獻 46 圖目錄 圖1.1 全球銷售額及年成長 1 圖1.2 研究架構圖 3 圖1.3 論文架構圖 4 圖3.1配送路線示意圖 12 圖3.2配送時段示意圖 12 圖4.1演算流程示意圖 19 圖4.2非對稱型節省法連結前示意圖 21 圖4.3非對稱型節省法連結後示意圖 21 圖4.4對稱型節省法連結前示意圖 22 圖4.5對稱型節省法連結後示意圖 22 圖4.6起始解流程圖 23 圖4.7路線改善流程圖 24 圖4.8路線內節點交換前 25 圖4.9路線內節點交換後 25 圖4.10路線間0-1節點交換前 25 圖4.11路線間0-1節點交換後 25 圖4.12路線間1-1節點交換前 26 圖4.13路線間1-1節點交換後 26 圖5.1跨區旅行時間示意圖 30 圖5.2區域編碼 31 圖5.3 nf=1,松山區演算之結果 38 圖5.4成本折線圖 40 圖5.5成本差異分析圖 41 圖6.1設施數、成本、及配送時間關係圖 43 表目錄 表2.1 演算法架構整理 8 表2.2相關研究整理 10 表4.1節省法比較表 20 表5.1單日平均訂單數 28 表5.2每張訂單平均服務時間(單位:分鐘) 29 表5.3各需求區域服務時間(單位:分鐘) 30 表5.4 nf=1設施指派表 32 表5.5 nf=2設施指派表 33 表5.6 nf=1松山區起始解 34 表5.7 nf=2(士林區,大安區)起始解 35 表5.8中山區路線改善後結果 37 表5.9 nf=1下各組最佳解 38 表5.10求解結果比較表 39 表5.11各時段最佳設施區位 40 表5.12各時段所需車輛表 41 表5.13執行運算時間 42 | |
| dc.language.iso | zh-TW | |
| dc.subject | 配送模型 | zh_TW |
| dc.subject | 啟發式演算法 | zh_TW |
| dc.subject | B2C電子商務物流 | zh_TW |
| dc.subject | 區位途程問題 | zh_TW |
| dc.subject | Distribution Model | en |
| dc.subject | B2C E-commerce Logistic | en |
| dc.subject | Huristic | en |
| dc.subject | Location-Routing Problem | en |
| dc.title | 基於總成本考量下B2C電子商務配送模式之研究 | zh_TW |
| dc.title | A Study of B2C E-Commerce delivery model
based on total cost approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳政鴻,洪一熏 | |
| dc.subject.keyword | B2C電子商務物流,配送模型,區位途程問題,啟發式演算法, | zh_TW |
| dc.subject.keyword | B2C E-commerce Logistic,Distribution Model,Location-Routing Problem,Huristic, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-10-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| Appears in Collections: | 工業工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 3.69 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
