Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51810
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李百祺
dc.contributor.authorYi-Chiang Sunen
dc.contributor.author孫義強zh_TW
dc.date.accessioned2021-06-15T13:51:01Z-
dc.date.available2017-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-10-06
dc.identifier.citation參考文獻
[1] A. Denisov, and E. Yeatman, 'Ultrasonic vs. Inductive Power Delivery for Miniature Biomedical Implants,' IEEE 2010 International Conference on Body Sensor Networks pp. 84-89, June 2010.
[2] Y.T. Hu, X. Zhang, Y. Jiashi, and J. Qing, 'Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50 pp. 773-781, July 2003.
[3] S. Sherrit, M. Badescu, X. Bao, Y. Bar-Cohen and Z. Chang, 'Efficient electromechanical network model for wireless acoustic-electric feed-throughs,' SPIE Smart Structures Conference, pp. 362-372, May 2005.
[4] J. Charthad, M.J. Weber, C.C. Ting, and M. Saadat, , 'A mm-sized implantable device with ultrasonic energy transfer and RF data uplink for high-power applications,' 2014 IEEE Proceedings of the Custom Integrated Circuits Conference pp. 1-4, June 2014.
[5] B.C. Towe, P.J. Larson, and D.W. Gulick, 'A microwave powered injectable neural stimulator,' 2012 Annual International Conference of the Engineering in Medicine and Biology Society pp. 5006-5009, Aug 2012.
[6] B.C. Towe, T. Graber, D.W. Gulick, and R. Herman, 'Wireless microstimulators for treatment of peripheral vascular disease,' 2013 6th International IEEE/EMBS Conference on Neural Engineering, pp. 1485-1488, Nov 2013.
[7] J.S. Ho, J.Y Alexander, N. Evgenios, K. Sanghoek, T. Yuji, P. Bhagat, E.B. Ramin, and S.Y.A. Poona, 'Wireless power transfer to deep-tissue microimplants,' Proceedings of the National Academy of Sciences, vol. 111, pp. 7974-7979, July 2014.
[8] S.L. Sherrit, S.P. Leary, B.P. Dolgin, and Y. Bar-Cohen, 'Comparison of the Mason and KLM equivalent circuits for piezoelectric resonators in the thickness mode,' 1999 IEEE Ultrasonics Symposium Proceedings, vol. 2, pp. 921-926, Oct 1999.
[9] P.J. Larson, and B.C. Towe, 'Miniature ultrasonically powered wireless nerve cuff stimulator,' 2011 5th International IEEE/EMBS Conference on Neural Engineering pp. 265-268, May 2011.
[10] T. Lawry, K. Wilt, J. Ashdown, H. Scarton, and G. Saulnier, 'A high-performance ultrasonic system for the simultaneous transmission of data and power through solid metal barriers,' IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control, vol. 60, pp. 194-203, Dec 2012.
11] 蔡哲宇,超音波無線神經刺激器,國立台灣大學生醫電資所碩士論文,2011
[12] 吳宜瑾,設計微結構應用於超音波定位,國立台灣大學生醫電資所碩士論文,2013
[13] A.M. Sodagar, G.E. Perlin, Y. Ying, and K. Najafi, 'An Implantable 64-Channel Wireless Microsystem for Single-Unit Neural Recording,' IEEE Journal of Solid-State Circuits, vol. 44, pp. 2591-2604, Oct 2009.
[14] J.D. Ashdown, K.R. Wilt, T.J. Lawry, and G.J. Saulnier, 'A full-duplex ultrasonic through-wall communication and power delivery system,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, pp. 587-595, Mar 2013.
[15] D.W. Eisele, P.L. Smith, D.S. Alam, and A.R. Schwartz, 'Direct hypoglossal nerve stimulation in obstructive sleep apnea,' Arch Otolaryngol Head Neck Surg, vol. 123, pp. 57-61, Jan 1997.
[16] B. Linderoth, and R.D. Foreman, 'Mechanisms of spinal cord stimulation in painful syndromes: role of animal models,' Pain Medicine, pp. S14-S26, July 2006.
[17] J.A. Zhou, S.J. Woo, S.I. Park, E.T. Kim, J.M. Seo, H. Chung, and S.J. Kim, 'A Suprachoroidal Electrical Retinal Stimulator Design for Long-Term Animal Experiments and In Vivo Assessment of Its Feasibility and Biocompatibility in Rabbits,' Journal of Biomedicine and Biotechnology, pp. 547428, Feb 2008.
[18] K. Bazaka and M. Jacob, 'Implantable Devices: Issues and Challenges,' Electronics, vol. 2, pp. 1-34, Dec 2012.
[19] S.K. Arfin, M.A. Long, M.S. Fee, and R. Sarpeshkar, 'Wireless neural stimulation in freely behaving small animals.,' Journal of Neurophysiology, vol. 102, pp. 598-605, Apr 2009
[20] S.H. Cho, L. Cauller, W. Rosellini, and J.B. Lee 'A MEMS-based fully-integrated wireless neurostimulator,' 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems pp. 300-303, Jan 2010.
[21] S.Y.R. Hui, W.X. Zhong, and C.K. Lee, 'A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer,' IEEE Transactions on Power Electronics, vol. 29, pp. 4500-4511, April 2014.
[22] N.F. Declercq, J. Degrieck, R. Briers and O. Leroy, 'A theoretical study of special acoustic effects caused by the staircase of the El Castillo pyramid at the Maya ruins of Chichen-Itza in Mexico, ' Journal of the Acoustical Society of America, vol. 116, pp. 3328-3335, Dec 2004.
[23] G.V. Cochran, M.P. Kadaba, and V.R. Palmieri, 'External ultrasound can generate microampere direct currents in vivo from implanted piezoelectric materials,' Journal of Orthopaedic Research, vol. 6, pp. 145-147, 1988.
[24] S. Arra, J. Leskinen, J. Heikkila, and J. Vanhala, 'Ultrasonic Power and Data Link for Wireless Implantable Applications,' ISWPC '07. 2nd International Symposium on Wireless Pervasive Computing, Feb 2007.
[25] F. Mazzilli, M. Peisino, R. Mitouassiwou, and B. Cotté, 'In-vitro platform to study ultrasound as source for wireless energy transfer and communication for implanted medical devices,' 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society pp. 3751-3754, Aug 2010.
[26] Y. Shigeta, T. Yamamoto, K. Fujimori, and M. Sanagi, 'Development of ultrasonic wireless power transmission system for implantable electronic devices,' Wireless Technology Conference, Sept 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51810-
dc.description.abstract中文摘要
隨著微電子技術的成長,微小的醫療儀器以植入人體的方式作針對性的診斷輔助與治療,可以增加診斷及治療的準確性,且能減緩病人的不適性。常見的植入式儀式,如膀胱節律器、神經刺激器等裝置以電磁波作為無線傳輸將訊號以及能量從外部傳到儀器內。由於需要能量的供應,一般植入式需要較大型的電池供應能量,因此無法大幅度的減少裝置的面積。無線充電成為解決上述問題的方法之一。除了以電磁波作無線傳輸能量外,近年的研究顯示以超音波作為傳輸能量的方式、在面積日漸減小的植入式裝置下能接收到更多能量。但是要達到使用超音波作無線傳輸訊號及能量的目的,需要對裝置作編碼和定位,為了達到上述目前,本論文討論如何利用超音波陣列系統作的定位以及編碼、並在FDA規範的Isppa與Ispta限制內,使用超音波感測器可收到的能量範圍下,設計一功率為2.3 mW的低耗電植入式神經刺激器IC,以符合超音波傳輸特性的解調方式,設計編碼及能量傳輸方式。此IC能達到植入式裝置進行充電、以及資料傳輸等操作。為了方便達到以上目的,陣列系統的定位、達到將能量聚焦在植入式裝置上,我們把裝置設計成以階梯狀的微結構,利用B-mode影像達到粗略超音波定位的目的並結合時頻分析,來準確定位到微結構位置。最後整合超音波陣列系統,因陣列系統同時具備聚焦和影像的功能,分析陣列系統影像的原始通道資料,得到較準確定位的能力。而本研究中將把裝置放置在3-7 cm的深度,控制超音波聚焦位置,使超音波能量聚焦在植入式裝置上; 並由感測器接收能量,最後由陣列系統編碼,達成無線充電和信號傳輸的功能。而IC將會對編碼後的訊號作解調,得到所需神經刺激功能。結果顯示利用本研究所提出的方法能有效的對裝置作定位、充電以及資料傳輸等三大功能。
關鍵字:超音波無線能量傳輸、超音波陣列系統、植入式裝置、定位、階梯狀微結構
zh_TW
dc.description.abstractAbstract
Traditionally, the power for an implantable device is provided by a battery. Therefore, there are certain limitations including changing the battery and the size of the battery. Wireless power transfer is one of the solutions to alleviating such problems. Recently, we have demonstrated that wireless power transfer can be achieved by ultrasound and the implantable device can be detected by ultrasound using a housing with specific microstructures. In this study, we hypothesize that these tasks can all be performed by a clinical ultrasound array system. The custom design IC in the implantable device is 2 mm×2.2 mm and we are able to transfer power of 2.3 mW which is more than enough for neural stimulation. There is also a pyramid microstructure on the implantable device, which reflects ultrasound to generate signals with specific spectral characteristics. Applying time-frequency analysis to analyze the signal, frequency deceasing occurs and location of the device can be detected. Thus, we have demonstrated that neural stimulation using the proposed setup can be performed using a clinical ultrasound array system.
Keywords: implantable system, wireless power transferring, microstructure, ultrasound array system, localization
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:51:01Z (GMT). No. of bitstreams: 1
ntu-104-R02945008-1.pdf: 3122008 bytes, checksum: d8cb762a57df1f299c4e8d87866922f2 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContent
致謝…………………………………………………………………………………….i
中文摘要………………………………………………………………………………ii
Abstract……………………………………………………………………………….iii
Content………………………………………………………………………………..iv
List of Figure…………………………………………………………………….......vii
List of Table…………………………………………………………………….……...x
Chapter1 緒論………………………………………………………………………...1
1.1. 植入式系統的無線通信及充電……………………..……….……….1
1.2. 電磁波耦合能量傳輸……………………………..…….…………….1
Ⅰ. Magnetic coupling coefficients...……...………...……….…….…3
Ⅱ. 能量傳輸效率……………………………………………………4
1.3. 超音波能量傳輸……………..……………..………….……….…..…5
Ⅰ. Mason's model…………….……………………….……….…..…6
Ⅱ. Insertion loss和receive loss……………………………………….8
Ⅲ. 超音波Beam對能量傳輸的影響………………………………10
1.4. 電磁波和超音波在體內的衰減效應………………………………12
1.5. 電磁波和超音波做為體內能量傳輸的比較……………………..…13
1.6. 目前電磁波和超音波植入式系統的研究…………………………15
Ⅰ. 使用電磁波能量傳輸至體內微植入……………….……….…15
Ⅱ. 超音波無線神經刺激器………………………………………...16
Ⅲ. 使用超音波提供能量給神經刺激器……...…………………17
Ⅳ. 使用超音波傳輸能量的範圍及應用目的整理………………...18
1.7. 臨床上植入式系統應用需求………………………………………..20
Ⅰ. 臨床常見的超音波系統…………………………….……….…20
Ⅱ. 信號及能量傳輸需求…………………………………………...21
Ⅲ. 植入式裝置無線充電需求……………………………………..22
1.8. 研究目的……………………………………………………..………23
Chapter2 超音波陣列系統定位植入裝置…………………...…………..…………25
2.1. 研究目的………………………………………………………..……25
2.2. 階梯狀微結構對回波信號的影響………………………..…………26
Ⅰ. 階梯狀結構的反射信號疊加原理……………………..………26
Ⅱ. 時頻分析分析反射信號……………………………..…………28
Ⅲ. 微結構的反射信號中心頻率變化.………………………….…29
2.3. 實驗結果與討論………………………………………………..……32
Ⅰ. 階梯狀微結構反射超音波實驗……………………………..…32
Ⅱ. 陣列系統分析微結構……………………………..……………33
Ⅲ. 時頻分析B-mode影像…………………………………….……34
Ⅳ. 能傳傳輸和角度的關係……………………………..…………36
Ⅴ.微結構和角度的關係……………………………..…………..…37
Chapter3 無線充電和資料傳輸………………………………...…………..………39
3.1. 研究目的………………………………………………………..……39
3.2. 能量傳輸…………………………………………………..…………40
Ⅰ. 感測器材料選擇……………………………………...…………40
Ⅱ. 感測器厚度選擇……………………………………...…………40
Ⅲ. 匹配層……………………………………………………...……41
Ⅳ. 感測器製作……………………………………………...………43
Ⅴ. 能量和信號接收器整合……………………………...…………43
3.3. 資料傳輸…………………………………………………..…………44
3.4. 實驗結果與討論…………………………………………..…………46
Chapter4 植入式裝置…………………………………..……………….……..……47
4.1. 系統架構…………………………………………………..…………47
4.2. 能量接收器(Power Receiver)架構………………..…………………48
4.3. 資料接收器(Data Receiver)架構……………………………….……49
Ⅰ. 封包偵測器 (Envelope Detector) …………………...…………49
Ⅱ. 單次觸發正反器(Monoflop) ……………………………...……50
Ⅲ. 記數器(Counter) …………………………………………..……50
4.4. 神經電刺激器(Stimulator) ………………………….………………51
4.5 設計流程……………………………………………………….……51
4.6. 模擬結果………………………………………………….…………54
4.7. 晶片量測結果…………………………………………….…………57
4.8. 裝置整合……………………………………………………….……59
4.9. 封裝後的裝置量測………………………………………..…………61
Chapter5 結論..………………………………………………………..………….…62
Chapter6 未來工作……………………………………...……………….…….……65
參考文獻 ……………………………………………………………………………67
dc.language.isozh-TW
dc.subject階梯狀微結構zh_TW
dc.subject超音波無線能量傳輸zh_TW
dc.subject超音波陣列系統zh_TW
dc.subject植入式裝置zh_TW
dc.subject定位zh_TW
dc.subjectmicrostructureen
dc.subjectlocalizationen
dc.subjectultrasound array systemen
dc.subjectimplantable systemen
dc.subjectwireless power transferringen
dc.title使用超音波陣列系統實現植入式裝置的偵測及能量傳輸zh_TW
dc.titleDetection and Wireless Charging for an Implantable Device Using an Ultrasound Array Systemen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏齡,沈哲州,鄭耿璽,劉建宏
dc.subject.keyword超音波無線能量傳輸,超音波陣列系統,植入式裝置,定位,階梯狀微結構,zh_TW
dc.subject.keywordimplantable system,wireless power transferring,microstructure,ultrasound array system,localization,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2015-10-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
3.05 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved