Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor湯志永(Chih-Yung Tang)
dc.contributor.authorYun-Chia Chienen
dc.contributor.author簡韻珈zh_TW
dc.date.accessioned2021-06-15T13:49:49Z-
dc.date.available2018-02-24
dc.date.copyright2016-02-24
dc.date.issued2015
dc.date.submitted2015-10-21
dc.identifier.citationApaja PM, Foo B, Okiyoneda T, Valinsky WC, Barriere H, Atanasiu R, Ficker E, Lukacs GL, Shrier A (2013) Ubiquitination-dependent quality control of hERG K(+) channel with acquired and inherited conformational defect at the plasma membrane. Molecular Biology of the Cell 24:3787-3804.
Aromataris EC, Rychkov GY (2006) ClC-1 CHLORIDE CHANNEL: MATCHING ITS PROPERTIES TO A ROLE IN SKELETAL MUSCLE. Clinical and Experimental Pharmacology and Physiology 33:1118-1123.
Babst M (2014) Quality control at the plasma membrane: One mechanism does not fit all. journal of cell biology 205:11-20.
Bretag AH (1987) Muscle chloride channels. Physiological Reviews 67:618-724.
Chen T-Y (2005) STRUCTURE AND FUNCTION OF CLC CHANNELS. Annual Review of Physiology 67: :809-839.
Chen Y-A, Peng Y-J, Hu M-C, Huang J-J, Chien Y-C, Wu J-T, Chen T-Y, Tang C-Y (2015) The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels. Scientific Reports 5:10667.
Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79-87.
Edlich F, Weiwad M, Erdmann F, Fanghänel J, Jarczowski F, Rahfeld J-U, Fischer G (2005) Bcl-2 regulator FKBP38 is activated by Ca(2+)/calmodulin. The EMBO Journal 24:2688-2699.
Estévez R, Jentsch T (2002) CLC chloride channels: correlating structure with function. Current Opinion in Structural Biology 12:531-539.
Gao Y, Yechikov S, Vazquez AE, Chen D, Nie L (2013) Distinct Roles of Molecular Chaperones HSP90α and HSP90β in the Biogenesis of KCNQ4 Channels. PLoS ONE 8:e57282.
Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571-580.
Hebert DN, Molinari M (2007) In and Out of the ER: Protein Folding, Quality Control, Degradation, and Related Human Diseases. Physiological Reviews 87:1377-1408.
Hohberger B, Enz R (2009) Cereblon is expressed in the retina and binds to voltage-gated chloride channels. FEBS Letters 583:633-637.
Hutt DM, Roth DM, Chalfant MA, Youker RT, Matteson J, Brodsky JL, Balch WE (2012) FK506 Binding Protein 8 Peptidylprolyl Isomerase Activity Manages a Late Stage of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Folding and Stability. The Journal of Biological Chemistry 287:21914-21925.
Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects' Review Series. EMBO Reports 9:536-542.
Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular Structure and Physiological Function of Chloride Channels. Physiological Reviews 82:503-568.
Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP, Lafer EM, Sousa R (2007) Structural Basis of J Cochaperone Binding and Regulation of Hsp70. Molecular cell 28:422-433.
Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823:607-613.
Kampinga HH, Craig EA (2010) The Hsp70 chaperone machinery: J-proteins as drivers of functional specificity. Nature reviews Molecular cell biology 11:579-592.
Kang CB, Hong Y, Dhe-Paganon S, Yoon HS (2008) FKBP Family Proteins: Immunophilins with Versatile Biological Functions. Neurosignals 16:318-325.
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular Chaperone Functions in Protein Folding and Proteostasis. Annual Review of Biochemistry 82:323-355.
Lam E, Martin M, Wiederrecht G (1995) Isolation of a cDNA encoding a novel human FK506-binding protein homolog containing leucine zipper and tetratricopeptide repeat motifs. Gene 160:297-302.
Lecker SH, Goldberg AL, Mitch WE (2006) Protein Degradation by the Ubiquitin Proteasome Pathway in Normal and Disease State. journal of the American Society of Nephrology:1807-1819.
Lee T-T, Zhang X-D, Chuang C-C, Chen J-J, Chen Y-A, Chen S-C, Chen T-Y, Tang C-Y (2013) Myotonia Congenita Mutation Enhances the Degradation of Human CLC-1 Chloride Channels. PLoS ONE 8:e55930.
Lemus L, Goder V (2014) Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells 3:824-847.
Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823:624-635.
Li J, Richter K, Reinstein J, Buchner J (2013) Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 20:326-331.
Lippincott-Schwartz J, Donaldson JG, Schweizer A, Berger EG, Hauri H-P, Yuan LC, Klausner RD (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin a suggests an ER recycling pathway. Cell 60:821-836.
Litterman N, Ikeuchi Y, Gallardo G, O'Connell BC, Sowa ME, Gygi SP, Harper JW, Bonni A (2011) An OBSL1-Cul7<sup>Fbxw8</sup> Ubiquitin Ligase Signaling Mechanism Regulates Golgi Morphology and Dendrite Patterning. PLoS Biol 9:e1001060.
Lodish H BA, Zipursky SL (2000) Molecular Mechanisms of Vesicular Traffic. Molecular Cell Biology 4th edition New York: W. H. Freeman
Lu A, Pfeffer SR (2014) A CULLINary ride across the secretory pathway: more than just secretion. Trends in Cell Biology 24:389-399.
Mac&iacute;as Mar&iacute;a J, Teijido O, Zifarelli G, Martin P, Ramirez-Espain X, Zorzano A, Palac&iacute;n M, Pusch M, Est&eacute;vez R (2007) Myotonia-related mutations in the distal C-terminus of ClC-1 and ClC-0 chloride channels affect the structure of a poly-proline helix. Biochemical Journal 403:79-87.
Mayer MP (2010) Gymnastics of Molecular Chaperones. Molecular Cell 39:321-331.
Miller C, White MM (1984) Dimeric structure of single chloride channels from Torpedo electroplax. Proceedings of the National Academy of Sciences of the United States of America 81:2772-2775.
Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Reports 2:1133-1138.
Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiologica Scandinavica 177:119-147.
Okiyoneda T, Barri&egrave;re H, Bagd&aacute;ny M, Rabeh WM, Du K, H&ouml;hfeld J, Young JC, Lukacs GL (2010) Peripheral Protein Quality Control Removes Unfolded CFTR from the Plasma Membrane. Science 329:805-810.
Papponen H, Nissinen M, Kaisto T, Myllyl&auml; VV, Myllyl&auml; R, Metsikk&ouml; K (2008) F413C and A531V but not R894X myotonia congenita mutations cause defective endoplasmic reticulum export of the muscle-specific chloride channel CLC-1. Muscle & Nerve 37:317-325.
Pearl LH, Prodromou C (2006) Structure and Mechanism of the Hsp90 Molecular Chaperone Machinery. Annual Review of Biochemistry 75:271-294.
Platt D, Griggs R (2009) Skeletal Muscle Channelopathies: New insights into the periodic paralyses and nondystrophic myotonias. Current opinion in neurology 22:524-531.
Pratt WB, Toft DO (2003) Regulation of Signaling Protein Function and Trafficking by the hsp90/hsp70-Based Chaperone Machinery. Experimental Biology and Medicine 228:111-133.
Preissler S, Deuerling E (2012) Ribosome-associated chaperones as key players in proteostasis. Trends in Biochemical Sciences 37:274-283.
Ptacek LJ, Johnson KJ, Griggs RC (1993) Genetics and Physiology of the Myotonic Muscle Disorders. New England Journal of Medicine 328:482-489.
Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Human Mutation 19:423-434.
Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H, Richter K, Buchner J (2010) Asymmetric Activation of the Hsp90 Dimer by Its Cochaperone Aha1. Molecular Cell 37:344-354.
Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761-771.
Saviane C, Conti F, Pusch M (1999) The Muscle Chloride Channel ClC-1 Has a Double-Barreled Appearance that Is Differentially Affected in Dominant and Recessive Myotonia. The Journal of General Physiology 113:457-468.
Schaefer H, Rongo C (2006) KEL-8 Is a Substrate Receptor for CUL3-dependent Ubiquitin Ligase That Regulates Synaptic Glutamate Receptor Turnover. Molecular Biology of the Cell 17:1250-1260.
Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR Domain–Peptide Complexes: Critical Elements in the Assembly of the Hsp70–Hsp90 Multichaperone Machine. Cell 101:199-210.
Serhiy Pankiv THC, TL, AB, Jack-Ansgar Bruun, HO, Aud &Oslash;vervatn GB, aTJ (2007) p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate
Degradation of Ubiquitinated Protein Aggregates
by Autophagy. THE JOURNAL OF BIOLOGICAL CHEMISTRY 282:24131–24145.
Steinmeyer K, Ortland C, Jentsch TJ (1991) Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354:301-304.
Subbarao Sreedhar A, Kalm&aacute;r &Eacute;, Csermely P, Shen Y-F (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Letters 562:11-15.
T. Schindler, R. Bergfeld, M. Hohl, Schopfer P (1994) Inhibition of Golgi-apparatus function by brefeldin A in maize coleoptiles and its consequences on auxin-mediated growth, cell-waU extensibility and secretion of cell-wall proteins. Planta 192:404-413.
Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515-528.
Tang C-Y, Chen T-Y (2011) Physiology and Pathophysiology of CLC-1: Mechanisms of a Chloride Channel Disease, Myotonia. Journal of Biomedicine and Biotechnology 2011:685328.
Terlecky SR (1994) Hsp70s and lysosomal proteolysis. Experientia 50:1021-1025.
Turnbull EL, Rosser MFN, Cyr DM (2007) The role of the UPS in cystic fibrosis. BMC Biochemistry 8:S11-S11.
Walker VE, Atanasiu R, Lam H, Shrier A (2007) Co-chaperone FKBP38 Promotes HERG Trafficking. Journal of Biological Chemistry 282:23509-23516.
Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates Iii JR, Balch WE (2006) Hsp90 Cochaperone Aha1 Downregulation Rescues Misfolding of CFTR in Cystic Fibrosis. Cell 127:803-815.
Wiedmann B, Sakai H, Davis TA, Wiedmann M (1994) A protein complex required for signal-sequence-specific sorting and translocation. Nature 370:434-440.
Wollnik B, Kubisch C, Steinmeyer K, Pusch M (1997) Identification of Functionally Important Regions of the Muscular Chloride Channel ClC-1 by Analysis of Recessive and Dominant Myotonic Mutations. Human Molecular Genetics 6:805-811.
Wong M, Munro S (2014) The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science (New York, NY) 346:1256898-1256898.
Wu FF, Ryan A, Devaney J, Warnstedt M, Korade‐Mirnics Z, Poser B, Escriva MJ, Pegoraro E, Yee AS, Felice KJ, Giuliani MJ, Mayer RF, Mongini T, Palmucci L, Marino M, R&uuml;del R, Hoffman EP, Fahlke C (2002) Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain 125:2392-2407.
Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781-791.
Zimmerman ES, Schulman BA, Zheng N (2010) Structural assembly of cullin-RING ubiquitin ligase complexes. Current Opinion in Structural Biology 20:714-721.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51788-
dc.description.abstract先天性肌肉強直症(myotonia congenita)是一種遺傳性的骨骼肌病變,是由於第七對染色體上的CLCN1基因發生變異,造成骨骼肌CLC-1氯離子通道之功能改變。本實驗室先前利用野生型(wild-type)CLC-1以及一種與肌肉強直症相關的突變型(A531V)進行研究,發現CLC-1在內質網中會藉由cullin-RING ubiquitin ligase 4 (CRL4)進行蛋白酶體降解,此外也發現了多種分子伴護蛋白(molecular chaperones)對CLC-1蛋白質生合成的影響。本論文的目的為檢測可能參與CLC-1在細胞膜上的調控之分子伴護蛋白及泛素連結酶。
首先,我們利用細胞表面生物素化(surface biotinylation)的方法發現,在與CLC-1共同表現時,分子伴護蛋白FKBP在細胞膜分布的比例會明顯的增加。以相同的方法進行實驗,我們還發現CLC-1也會增加CRL complex在細胞膜分布的比例明顯增加。相反的,我們發現分子伴護蛋白不論是否與CLC-1共同表現時,都不會被細胞生物素化偵測到明顯的訊號。另外,我們也利用次細胞分離法(subcellular fractionation)去探討FKBP在有無CLC-1情況下的次細胞分布狀況,我們發現共同表現CLC-1時,會使FKBP由類似calnexin (內質網標記蛋白)的次細胞分布狀況改變為類似cadherin (膜標記蛋白)之次細胞分布狀況。針對細胞質蛋白質(cytosolic protein),我們改用差速離心法(differential centrifugation)去觀察CRL complex在有無CLC-1情況下的次細胞分布狀況,我們發現共同表現CLC-1時,會使CRL complex在細胞膜的分布增加,但是Hsp的分布狀況則沒有明顯變化。Brefildin A是一種能夠抑制囊泡由內質網運送至高基氏體的藥物,會干擾諸如CLC-1等膜蛋白被運送到細胞膜上的過程,因此可用以觀察膜蛋白質在細胞膜上的代謝時程(turnover rate)。我們初步的實驗結果顯示,當共同表現FKBP時,似乎會使得細胞膜上的A531V較為穩定。
從以上的研究觀察我們可以推論當細胞大量表現CLC-1時,FKBP及CRL complex在細胞膜分布的機率會明顯增加,這個結果可能暗示著FKBP8及CRL4 complex都可能與位於細胞膜上的CLC-1具有交互作用,並且影響CLC-1在細胞膜上的代謝過程。未來,我們將進一步以brefeldin A確認FKBP、CRL complex及其它分子伴護蛋白是否會影響CLC-1在細胞膜上的代謝時程。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T13:49:49Z (GMT). No. of bitstreams: 1
ntu-104-R02441019-1.pdf: 1978102 bytes, checksum: 637dfc89a0c2687391ee739ce9dba237 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 i
Abstract iii
目錄 v
圖表目錄 viii
第一章 導論 1
1.1 氯離子通道 (Chloride channels) 1
1.2 CLC-1的結構及生理功能 1
1.3 先天性肌肉強直症 (Myotonia congenita) 2
1.4 Myotonia mutant: A531V 3
1.5 蛋白質平衡 4
1.6 分子伴護蛋白的基本概念 4
1.7 分子伴護蛋白的作用途徑 5
1.8 The Hsp70 system 5
1.9 The Hsp90 system 6
1.10 蛋白質降解系統 8
1.11 蛋白質運送機轉 9
1.12 Peripheral Quality Control 9
1.13 研究目的 10
第二章 材料與方法 11
2.1 DNA construct 11
2.2 Cell culture 11
2.3 DNA Transfection 12
2.4 Immunoblotting 12
2.5 Biotinylation 13
2.6 Subcellular Fractionation 13
2.7 Differential Centrifugation Fractionation 14
2.8 Fluorescence staining 14
2.9 Brefildin A treatment 15
2.10統計分析 16
第三章 結果 17
3.1部分CLC-1的分子伴護蛋白及泛素蛋白酶體會因CLC-1大量表現而出現分布於細胞膜的現象 17
3.2免疫螢光染色觀察CLC-1對FKBP8分布的影響 19
3.3利用次細胞細胞分離方法探討FKBP8及CLC-1在細胞中的分布 19
3.4利用差速離心細胞分離方法探討大量表現CLC-1對CRBN、CUL4A、DDB1及Hsp70在細胞中分布的影響 21
3.5利用BrefeldinA treatment探討FKBP8對CLC-1在細胞膜穩定性的影響 22
第四章 討論 24
4.1 大量表現CLC-1會影響FKBP8與CRL4 complex在細胞內的分布狀況 24
4.2 大量表現CLC-1不會明顯影響其它分子伴護蛋白的分布狀況 26
4.3 FKBP8和CRL4 complex對細胞膜上CLC-1的可能調控角色 28
4.4 待釐清之問題 29
4.5未來實驗方向 30
結論 33
圖表 34
附圖 50
參考資料 52
dc.language.isozh-TW
dc.subject品質控管zh_TW
dc.subject分子伴護蛋白zh_TW
dc.subject細胞膜分布zh_TW
dc.subjectmembrane distributionen
dc.subjectperipheral quality controlen
dc.subjectCLC-1en
dc.subjectFKBP8en
dc.title分子伴護蛋白和泛素連接酶與人類第一型氯離子通道蛋白之細胞膜分布zh_TW
dc.titleMembrane distribution of molecular chaperones and ubiquitin ligases with human CLC-1 channelsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee胡孟君,鄭瓊娟,卓貴美
dc.subject.keyword分子伴護蛋白,細胞膜分布,品質控管,zh_TW
dc.subject.keywordCLC-1,FKBP8,membrane distribution,peripheral quality control,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2015-10-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved