請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51784完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃青真 | |
| dc.contributor.author | Jia-Wei Lin | en |
| dc.contributor.author | 林家暐 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:49:37Z | - |
| dc.date.available | 2018-12-01 | |
| dc.date.copyright | 2015-12-01 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-10-21 | |
| dc.identifier.citation | 廖運文,苦瓜莖部與諾麗心材化學成分及生物活性之研究。2006,國立屏東科技
大學生物科技研究所碩士論文。 李天瑞,數種食材萃物對脂肪或肌肉細胞葡萄糖攝取之影響。2008,國立臺灣大 學微生物與生化學研究所碩士論文。 周怡君,以脂肪與肌肉細胞模式評估山苦瓜水萃物暨其區分物對細胞汲取葡萄糖 之影響與其機制探討。2010,國立臺灣大學生化科技學系碩士論文。 呂侃霓,以C57BL/6J小鼠模式研發血糖恆定調節之山苦瓜萃物。2013,國立臺灣 大學生化科技學系博士論文。 王思文,初探山苦瓜萃物對3T3-L1脂肪細胞褐化及粒粒線體增生相關基因表現之 影響。2013,國立臺灣大學生化科技學系碩士論文。 穆偉倢,山苦瓜上調C57BL/6J公鼠肝Fgf21 mRNA並誘發副睪脂褐化。2014,國 立臺灣大學生化科技學系碩士論文。 蔣汶龍,探討山苦瓜對飲食誘導肥胖模式小鼠骨骼肌粒線體增殖之影響。2014, 國立臺灣大學生化科技學系碩士論文。 臺灣衛生福利部,民國103年國人死因統計結果。2014。 臺灣衛生福利部國民健康署,2013年國民營養狀況變遷調查。2014。 臺灣衛生福利部國民健康署,成人 (20歲以上) 代謝症候群之判定標準 (2007 台 灣)。2007。 Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB. Annual deaths attributable to obesity in the United States. JAMA. 1999, 282 (16): 1530-1538. American diabetes association. Standards of Medical Care in Diabetes-2007. Diabetes Care. 2007, 30 (1): 4-41 American diabetes association. diagnosis and classification of diabetes mellitus diabetes care. 2010, 33: 62-69. Anderson RM, Shanmuganayagam D, Weindruch R. 'Caloric Restriction and Aging: Studies in Mice and Monkeys'. Toxicologic Pathology. 2009, 37 (1): 47-51. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes. 2005, 54: 2351-2359 Beloin N, Gbeassor M, Akpagana K, Hudson J, De Soussa K, Koumaglo K, Arnason JT. Ethnomedicinal uses of Momordica charantia(Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. Journal of Ethnopharmacology. 2005, 96 (1-2): 49-55. Bleich S, Cutler D, Murray C, Adams A. Working paper 12954: Why is the developed world obese? National Bureau of Economic Research. 2007. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012, 481: 463-468. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Krauns?e R, Dela F. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia, 2007, 50: 790-796. Castillo-Quan JI. From white to brown fat through the PGC-1α-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech. 2012, 5(3): 293-295. Canto C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cellular and molecular life sciences: CMLS. 2010, 67: 3407-3423. Cefalu WT, Ye J, Wang ZQ. Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans. Endocr Metab Immune Disord Drug Targets. 2008, 8(2): 78-81. Chen PH, Chen GC, Yang MF, Hsieh CH, Chuang SH, Yang HL, Kuo YH, Chyuan JH, Chao PM. Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J Nutr. 2012, 142: 1197-1204. Chen Q, Chan LL, Li ET. Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr. 2003, 133(4): 1088-1093. Chen Q, Li ET. Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines. Br. J Nutr. 2005, 93: 747-754. Cheng HL, Huang HK, Chang CI, Tsai CP, Chou CH. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J Agric Food Chem. 2008, 56(16): 6835-6843. Chhabra G, Dixit A. Structure modeling and antidiabetic activity of a seed protein of Momordica charantia in non-obese diabetic (nod) mice. Bioinformation 2013, 9: 766-770. Chin JM, Merves ML, Goldberger BA, Sampson-Cone A, Cone EJ. Caffeine content of brewed teas. J Anal Toxicol. 2008, 32(8): 702-704. Choo HJ, Kim JH, Kwon OB, Lee CS, Mun JY, Han SS, Yoon YS, Yoon G, Choi KM, Ko YG. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia. 2006, 49(4): 784-791. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014, 1(5): 3557. Cummings E, Hundal HS, Wackerhage H, Hope M, Belle M, Adeghate E, Singh J. Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Mol Cell Biochem. 2004, 261(1-2): 99-104. Daniel P. Kelly, and Richard C. Scarpulla. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Dev. 2004, 18: 357-368. Dean L, McEntyre J. The Genetic Landscape of Diabetes [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004. Chapter 2, Genetic Factors in Type 1 Diabetes. 2004. Defronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981, 30: 1000-1007. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985, 76: 149-155. de Lange P, Farina P, Moreno M, Ragni M, Lombardi A, Silvestri E, Burrone L, Lanni A, Goglia F. Sequential changes in the signal transduction responses of skeletal muscle following food deprivation. FASEB J. 2006, 20(14): 2579-2581. de Melo CL, Queiroz MG, Fonseca SG, Bizerra AM, Lemos TL, Melo TS, Santos FA, Rao VS. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem Biol Interact. 2010, 185(1): 59-65. Douglas E. Befroy, Kitt Falk Petersen, Sylvie Dufour, Graeme F. Mason, Robin A. de Graaf, Douglas L. Rothman, Gerald I. Shulman. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes, 2007, 56: 1376-1381. François RJ, Gerald IS. Regulation of mitochondrial biogenesis. Essays Biochem. 2010, 47: 69-84. Gao CL, Zhu C, Zhao YP, Chen XH, Ji CB, Zhang CM, Zhu JG, Xia ZK, Tong ML, Guo XR. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol. 2010(320): 25-33. Global burden of diabetes. International Diabetes federation. Diabetic atlas fifth edition. 2011. Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia: A review. Journal of Ethnopharmacology. 2004, 93(1): 123-132. Harinantenaina L, Tanaka M, Takaoka S, Oda M, Mogami O, Uchida M, Asakawa Y. Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chem Pharm Bull (Tokyo). 2006, 54(7): 1017-1021. Haslam DW, James WP. Obesity. Lancet. 2005, 366(9492): 1197-1209. He J, Watkins S, Kelley DE. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes. 2001, 50(4): 817-823. HeY, Li W, Li Y, Zhang S, Wang Y, Sun C. Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes. PLoS One. 2014, 9: e110711. Hetzler RK, Knowlton RG, Somani SM, Brown DD, Perkins RM. Effect of paraxanthine on FFA mobilization after intravenous caffeine administration in humans. J Appl Physiol (1985). 1990, 68(1): 44-47. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature. 2002, 420: 333-366. Ho HA, Lin WC, Kitanaka S, Chang CT, Wu JB. Analysis of bioactive triterpenes in Eriobotrya japonica Lindl. by high- performance liquid chromatography. J Food Drug Anal. 2008, 16: 41-45. Huang HL, Hong YW, Wong YH, Chen YN, Chyuan JH, Huang CJ, Chao PM. Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats. Br J Nutr. 2008, 99(2): 230-239. Huha JY, Panagiotoua G, Mougiosb V, Brinkoettera M, Vamvinia MT, Schneiderc BE, Mantzoros CS. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in se- rum and plasma and II mRNA expression and circulating concentra- tions in response to weight loss and ex- ercise. Metabolism 2012, 61(12): 1725-1738. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001, 88(5): 529-535. Iseli TJ, Turner N, Zeng XY, Cooney GJ, Kraegen EW, Yao S, Ye Y, James DE, Ye JM. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ. PLoS One. 2013, 8(4): e62309. ISO 10993-5:2009 Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity; International Organization for Standardization: Geneva, Switzerland, 2009. Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA. PPARγ coactivator-1α expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am. J. Physiol. Cell. Physiol. 2003, 284: 1669-1677. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci USA. 2007, 104: 12017-12022. Jayasooriya AP, Sakono M, Yukizaki C, Kawano M, Yamamoto K, Fukuda N. Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J Ethnopharmacol. 2000, 72(1-2): 331-336. Jia Y, Kim S, Kim J, Kim B, Wu C, Lee JH, Jun HJ, Kim N, Lee D, Lee SJ. Ursolic acid improves lipid and glucose metabolism in high-fat-fed C57BL/6J mice by activating peroxisome proliferator-activated receptor alpha and hepatic autophagy. Mol Nutr Food Res. 2015, 59(2): 344-354. Joseph AM, Joanisse DR, Baillot RG, Hood DA. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Experimental diabetes research 2012. 2012, 642038. Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine. 2011, 19(1): 32-37. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002, 51: 2944-2950. Klein MG, Simon BJ, Schneider MF. Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. J Physiol. 1990, 425: 599-626. Klomann SD, Mueller AS, Pallauf J, Krawinkel MB. Antidiabetic effects of bitter gourd extracts in insulin-resistant db/db mice. Br. J. Nutr. 2010, 104: 1613-1620. Kopelman, Peter G. Clinical obesity in adults and children: In Adults and Children. Blackwell Publishing. 2005, p493. Krawinkel MB, Keding GB. Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia. Nutr Rev. 2006, 64(7): 331-337. Kumar R, Balaji S, Uma TS, Sehgal PK. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. J Ethnopharmacol. 2009, 126(3): 533-537. Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, Bullard SA, Adams CM. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One. 2012, 7(6): e39332. Lefort N, Glancy B, Bowen B, Willis WT, Bailowitz Z, De Filippis EA, Brophy C, Meyer C, H?jlund K, Yi Z, Mandarino LJ. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes. 2010, 59(10): 2444-2452. Lira VA, Brown DL, Lira AK, Kavazis AN, Soltow QA, Zeanah EH, Criswell DS. Nitric oxide and AMPK cooperatively regulate PGC-1 in skeletal muscle cells. J Physiol. 2010, 588(18): 3551-3566. Liu Jie. Pharmacology of oleanolic acid and ursolic acid. Journal of Ethnopharmacology. 1995, (49): 57-68. Lawson MA, Purslow PP. Differentiation of myoblasts in serum-free media: effects of modified media are cell line-specific. Cells Tissues Organs. 2000, (167): 130-137. Mandel HG. Update on caffeine consumption, disposition and action. Food Chem.Toxicol. 2002, 40(9): 1231-1234. Marieb E, Hoehn K. Human Anatomy & Physiology 8th. San Francisco: Benjamin Cummings. 2007, p312. McConell GK, Ng GP, Phillips M, Ruan Z, Macaulay SL, Wadley GD. Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. Appl Physiol. 2010, 108: 589-595. Meyer, FP; Canzler E, Giers H, Walther H. Time course of inhibition of caffeine elimination in response to the oral depot contraceptive agent Deposiston. Hormonal contraceptives and caffeine elimination. Zentralbl Gynakol. 1991, 113(6): 297-302. Miura T, Itoh Y, Iwamoto N, Kato M, Ishida T. Suppressive activity of the fruit of Momordica charantia with exercise on blood glucose in type 2 diabetic mice. Biol Pharm Bull. 2004, 27(2): 248-250. Mogensen M, Sahlin K, Fernstrom M, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, H?jlund K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes, 2007, 56: 1592-1599. Nathanson, JA. Caffeine and related methylxanthines: possible naturally occurring pesticides. Science. 1984, 226(4671): 184-187. Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, Shah P, Feher D, Williams PG, Nerurkar VR. Momordica charantia (bitter melon) attenuateshigh-fat diet-associated oxidative stress andneuroinflammation. J Neuroinflammation. 2011, 8: 64. Nerurkar PV, Lee YK, Nerurkar VR. Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes. BMC Complement Altern Med. 2010, 10: 34. Novelle MG, Contreras C, Romero-Picó A, Miguel López M, Diéguez C. Irisin, Two Years Later. Int. J. Endocrinol. 2013, ID 746281. Ojuka EO, Jones TE, Han DH, Chen M, Wamhoff BR, Sturek M, Holloszy JO. Intermittent increases in cytosolic Ca2+ stimulate mitochondrial biogenesis in muscle cells. Am J Physiol Endocrinol Metab. 2002, 283(5): 1040-1045 O'Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, J?rgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA, Steinberg GR. AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A. 2011, 108(38): 16092-16097. Paul MH, Sperling E. Cyclophorase system XXIII. Correlation of cyclophorase activity and mitochondrial density in striated muscle. Proc Soc Exp Biol Med. 1952, 79: 352-354. Peçanha, FLM , Santos, AT , Da-Silva WS. Comparison of Metabolic Profiles Between Two Myoblast Cell Lines During Differentiation Into Myotubes. Instituto de Bioquímica Médica Leopoldo de Meis, CCS-UFRJ, RJ, Brasil. 2014. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004, 350(7): 664-671. Petersen KF, Dufour S, Shulman GI, Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents, PLoS Med. 2005, 2: e233. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J, Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. The Journal of biological chemistry. 2010, 285: 7153-7164. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998, 92: 829-839. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988, 37(12): 1595-1607. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belén Crujeiras A, Seoane LM, Casanueva FF, Pardo M. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013, 8(4): e60563. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P, Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways, FEBS Lett. 2008, 582: 46-53. Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ. Biomarkers of caloric restriction may predict longevity in humans. Science 2002, 297: 811. Sathishsekar D, Subramanian S. Beneficial effects of Momordica charantia seeds in the treatment of STZ-induced diabetes in experimental rats. Biol Pharm Bull. 2005, 28(6): 978-983. Shier D, Butler JL, Lewis R. Hole's Human Anatomy and Physiology, 10th Edition. 2004. Shih CC, Lin CH, Lin WL. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res. Clin. Pract. 2008, 81: 134-143. Shih CC1, Lin CH, Lin WL, Wu JB. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J Ethnopharmacol. 2009, 123(1): 82-90. Sirintorn YA, Sirichai A, Cheng YY, Polkit S, Sophon R, Walter HH. Slow acting protein extract from fruit pulp of momordica charantia with insulin secretagogue and insulinomimetic activities. Biol. Pharm. 2006, 29(6): 1126-1131. Sridhar MG, Vinayagamoorthi R, Arul Suyambunathan V, Bobby Z, Selvaraj N. Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats. Br J Nutr. 2008, 99(4): 806-812. Srivastava AK, Mishra A, Gautam S, Pal S, Mishra A, Kumar AR, Maurya R. Effect of momordica charantia fruits on streptozotocin-induced diabetes mellitus and its associated complications. Int J Pharm Pract. 2015, 7(3): 356-363 Sriwijitkamol A, Coletta DK, Wajcberg E, Balbontin GB, Reyna SM, Barrientes J, Eagan PA, Jenkinson CP, Cersosimo E, DeFronzo RA, Sakamoto K, Musi N. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes. 2007, 56(3): 836-848 Szendroedi J, Schmid AI, Chmelik M, Toth C, Brehm A, Krssak M, Nowotny P, Wolzt M, Waldhausl W, Roden M., Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes, PLoS Med, 2007, 4(5): e154. Tan MJ, Ye JM, Turner N, Honen-Behrens C, Ke CQ, Tang CP, Chen T, Weiss HC, Gesing ER, Rowland A, James DE, Ye Y. Antidiabetic activities of triterpenoids isolated from bitter melon associated with the activation of AMPK pathway. Chem Biol. 2008, 15: 263-273. Taube A, Eckardt K, Eckel J. Role of lipid-derived mediators in skeletal muscle insulin resistance. Am J Physiol Endocrinol Metab. 2009, 297(5): e1004-1012. Tortorella LL, Milasincic DJ, Pilch PF. Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J Biol Chem. 2001, 276: 13709-13717. Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodeling. Cardiovascular Research. 2009, 81: 449-456. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010, 1797(2): 113-128. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS. Fission and selective fusion govern mitochondrial segre- gation and elimination by autophagy. EMBO J. 2008, 27: 433-446. Uebanso T, Arai H, Taketani Y, Fukaya M, Yamamoto H, Mizuno A, Uryu K, Hada T, Takeda E. Extracts of Momordica charantia suppress postprandial hyperglycemia in rats. J Nutr Sci Vitaminol (Tokyo). 2007, 53(6): 482-488. Vestergaard H, Lund S, Larsen FS, Bjerrum OJ, Pedersen O. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1993, 91: 2342-2350. Virbasius CA, Virbasius JV, Scarpulla RC. NRF-1, an activator involved in nuclear-mitochondrial in- teractions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes & Dev. 1993, 7: 2431-2445. Woerle HJ, Meyer C, Dostou JM, Gosmanov NR, Islam N, Popa E, Wittlin SD, Welle SL, Gerich JE. Pathways for glucose disposal after meal ingestion in humans. Am J Physiol Endocrinol Metab. 2003, 284: e716-725. Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M, Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004, 432: 1027-1032. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 2002, 296(5566): 349-352. Youn JH, Gulve EA, Holloszy JO: Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am J Physiol. 1991, 260: c555-561, Zeng XY, Wang YP, Cantley J, Iseli TJ, Molero JC, Hegarty BD, Kraegen EW, Ye Y, Ye JM. Oleanolic acid reduces hyperglycemia beyond treatment period with Akt/FoxO1-induced suppression of hepatic gluconeogenesis in type-2 diabetic mice. PLoS One. 2012, 7: e42115. Zorzano A, Sebastián D, Romero M. Chapter 6. The Skeletal Muscle in Metabolic Syndrome. A Systems Biology Approach to Study Metabolic Syndrome. 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51784 | - |
| dc.description.abstract | 能量失衡是造成肥胖的主因,肥胖容易增加糖尿病、心血管等代謝疾病風險危及健康,並且肥胖盛行率逐年提高,已成為全球重要的公衛議題。苦瓜 (Momordica charantia L.) 為產於熱帶亞洲地區之日常蔬果,已有文獻證實苦瓜具有降血糖、降血脂、對抗肥胖與糖尿病等代謝異常疾病之功效。近期本實驗室研究發現,長期餵食苦瓜之C57BL/6J小鼠,骨骼肌粒線體生合成相關基因Pgc1a、Nrf1、Tfam表現增加,並且體脂肪較少、個體能量消耗較高。因此本篇研究目標將以L6與C2C12肌肉細胞為模式,探討山苦瓜萃取物對肌肉細胞粒線體增殖與功能之影響。
第一部分實驗以咖啡因作為正控制組建立L6與C2C12肌肉細胞粒線體增殖與功能提升之模式,發現咖啡因處理24小時可顯著增加L6與C2C12肌肉細胞粒線體生合成相關基因表現,檸檬酸合成酶 (CS) 活性提升,粒線體DNA複本數較高。第二部分實驗以山苦瓜乙酸乙酯萃取物 (EAE)、氯仿粗萃物酸水解後正己烷萃取物 (HEX) 與未酸水解之HEX(un) 處理細胞,發現EAE、HEX、HEX(un) 皆顯著增加肌肉細胞CS活性,但不影響粒線體生合成相關基因,顯示山苦瓜萃取物在不促進細胞粒線體的情況下提升粒線體CS活性。第二部分另比較存在苦瓜中之熊果酸 (UA) 對肌肉細胞粒線體之影響,結果顯示UA能促進L6肌肉細胞CS活性、粒線體生合成相關基因表現,增加細胞氧氣消耗速率,在C2C12肌肉細胞則否。 綜合以上,山苦瓜萃取物在本模式下雖不使肌肉細胞粒線體增殖,但可以促進粒線體CS酵素活性提升,細胞耗氧量增加。而苦瓜當中所含之成分熊果酸,能夠促進L6肌肉細胞CS酵素活性提升、粒線體增殖與增加細胞氧氣消耗。因此山苦瓜實具有活化粒線體功能之潛力,以改善肥胖等代謝異常疾病。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:49:37Z (GMT). No. of bitstreams: 1 ntu-104-R02b22006-1.pdf: 3274165 bytes, checksum: 93f7626a2a78fbb3091001287ec47c25 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii 縮寫對照表 v 總目錄 viii 圖目錄 xii 表目錄 xv 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 2 一、 肥胖與代謝症候群 2 二、 糖尿病 3 三、 肌肉組織與代謝異常 4 四、 粒線體 5 4.1粒線體的功能 6 4.2粒線體的功能缺失與代謝疾病 7 4.3粒線體的分裂與融合 9 4.4粒線體生合成與調控之相關基因 11 五、 山苦瓜 15 5.1咖啡因 15 5.2苦瓜與三萜類化合物 16 5.4熊果酸與齊墩果酸 17 5.3苦瓜與抗肥胖 18 第三節 研究假說與實驗架構 25 一、 研究假說 25 二、 研究架構 26 第二章 促進肌肉細胞粒線體增殖之模式建立 27 第一節 前言與實驗架構 27 一、 前言 27 二、 實驗架構 28 第二節 材料與方法 29 一、 細胞培養 29 1.1細胞株 29 1.2培養基與藥品試劑 29 1.3方法步驟 30 二、 藥品試劑與藥品處理 31 三、 MTT assay 31 四、 檸檬酸合成酶活性測定 32 4.1樣品製備 32 4.2藥品試劑 32 4.3原理 32 4.4方法步驟 33 五、 Real-time PCR分析基因表現與粒線體複本數 34 5.1總RNA抽取 34 5.2 RNA反轉錄為cDNA 34 5.3總DNA抽取 34 5.4 Real-time PCR分析基因表現 35 六、 海馬生物能量分析儀分析細胞氧氣消耗與產酸速率 36 6.1細胞培養 36 6.2螢光探針活化與校正 36 6.3細胞氧氣消耗與產酸速率分析 36 七、 儀器設備 37 八、 統計分析 37 第三節 結果 38 一、 咖啡因處理細胞5天,每天5小時 38 1.1 CS活性分析 38 1.2粒線體生合成相關基因表現分析 38 二、 咖啡因處理細胞24小時 38 2.1 MTT assay 39 2.2 CS活性分析 39 2.3粒線體相關基因表現分析 39 2.4粒線體DNA複本數分析 40 2.5細胞氧氣消耗速率 (OCR) 與產酸速率 (ECAR) 分析 40 第四節 討論 49 第五節 結論 50 第三章 山苦瓜萃取物對L6與C2C12肌肉細胞粒線體增殖與功能之影響 51 第一節 前言與實驗架構 51 一、 前言 51 二、 實驗架構 53 第二節 材料與方法 54 一、 細胞培養 54 二、 山苦瓜樣品製備與樣品處理 54 2.1 山苦瓜樣品製備 54 2.2樣品處理 55 三、 MTT assay 55 四、 檸檬酸合成酶活性測定 55 五、 Real-time PCR分析基因表現與粒線體複本數 56 六、 海馬生物能量分析儀分析細胞氧氣消耗與產酸速率 56 七、 薄層層析 56 八、 總三萜類呈色法測定 56 九、 山苦瓜萃取物三酸甘油酯含量測定 57 9.1原理 57 9.2方法步驟 57 十、 儀器設備 58 十一、 統計分析 58 第三節 結果 59 一、 山苦瓜萃取物處理細胞24小時 59 1.1 MTT assay 59 1.2 CS活性分析 59 1.3粒線體相關基因表現分析 60 1.4粒線體DNA複本數分析 60 二、 熊果酸、齊墩果酸處理細胞24小時 61 2.1 MTT assay 61 2.2 CS活性 61 2.3 粒線體相關基因表現 61 2.4粒線體DNA複本數 62 2.5細胞氧氣消耗速率 (OCR) 與產酸速率 (ECAR) 分析 62 三、 山苦瓜萃取物、熊果酸處理細胞4天 62 3.1 CS活性分析 62 3.2 粒線體相關基因表現量分析 63 四、 分析山苦瓜樣品中之組成 63 4.1 TLC薄層層析 63 4.2 HEX與HEX(un) 總三萜類含量分析與山苦瓜萃取物總三酸甘油酯含量分析 64 第四節 討論 87 第五節 結論 90 第四章 綜合討論與總結論 91 第一節 綜合討論 91 第二節 總結論 92 第五章 參考文獻 95 附錄 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肌肉細胞 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 檸檬酸合成? | zh_TW |
| dc.subject | 山苦瓜 | zh_TW |
| dc.subject | myotube | en |
| dc.subject | mitochondria | en |
| dc.subject | Bitter gourd | en |
| dc.subject | citrate synthase | en |
| dc.title | 初探山苦瓜萃取物對L6與C2C12肌肉細胞粒線體增殖與功能之影響 | zh_TW |
| dc.title | An initial approach to explore the effects of Momordica chanratia L. extracts on mitochondrial biogenesis and functions in L6 and C2C12 myotubes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂紹俊,蘇慧敏,林甫容,張美鈴 | |
| dc.subject.keyword | 山苦瓜,肌肉細胞,粒線體,檸檬酸合成?, | zh_TW |
| dc.subject.keyword | Bitter gourd,mitochondria,myotube,citrate synthase, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-10-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
